→ Квадратный корень. Действия с квадратными корнями

Квадратный корень. Действия с квадратными корнями

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt{25}\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\) , \(\sqrt{-4}\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\) , то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\) , а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл )
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\) ; \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\) ; \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt{25}\) , то \ Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt{16}=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\) , а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2<0\) ;

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\) . \(\bullet\) Так как \(\sqrt{a^2}=|a|\) , то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt{4^6}=|4^3|=4^3=64\)
2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\) , то \(a Пример:
1) сравним \(\sqrt{50}\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\) . Таким образом, так как \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Между какими целыми числами находится \(\sqrt{50}\) ?
Так как \(\sqrt{49}=7\) , \(\sqrt{64}=8\) , а \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\ &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\) .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\ &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt{28224}\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt{28224}=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

Что такое квадратный корень?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Это понятие очень простое. Естественное, я бы сказал. Математики на каждое действие стараются найти противодействие. Есть сложение - есть и вычитание. Есть умножение - есть и деление. Есть возведение в квадрат... Значит есть и извлечение квадратного корня! Вот и всё. Это действие (извлечение квадратного корня ) в математике обозначается вот таким значком:

Сам значок называется красивым словом "радикал ".

Как извлечь корень? Это лучше рассмотреть на примерах .

Сколько будет квадратный корень из 9? А какое число в квадрате даст нам 9? 3 в квадрате даст нам 9! Т.е:

А вот сколько будет квадратный корень из нуля? Не вопрос! Какое число в квадрате ноль даёт? Да сам же ноль и даёт! Значит:

Уловили, что такое квадратный корень? Тогда считаем примеры :

Ответы (в беспорядке): 6; 1; 4; 9; 5.

Решили? Действительно, уж куда проще-то?!

Но... Что делает человек, когда видит какое-нибудь задание с корнями?

Тосковать начинает человек... Не верит он в простоту и лёгкость корней. Хотя, вроде, и знает, что такое квадратный корень ...

Всё потому, что человек проигнорировал несколько важных пунктиков при изучении корней. Потом эти пунктики жестоко мстят на контрольных и экзаменах...

Пунктик первый. Корни надо узнавать в лицо!

Сколько будет корень квадратный из 49? Семь? Верно! А как вы узнали, что семь? Возвели семёрку в квадрат и получили 49? Правильно! Обратите внимание, чтобы извлечь корень из 49 нам пришлось проделать обратную операцию - возвести 7 в квадрат! И убедиться, что мы не промахнулись. А могли и промахнуться...

В этом и есть сложность извлечения корней . Возвести в квадрат можно любое число без особых проблем. Умножить число само на себя столбиком - да и все дела. А вот для извлечения корня такой простой и безотказной технологии нет. Приходится подбирать ответ и проверять его на попадание возведением в квадрат.

Этот сложный творческий процесс - подбор ответа - сильно упрощается, если вы помните квадраты популярных чисел. Как таблицу умножения. Если, скажем, надо умножить 4 на 6 - вы же не складываете четверку 6 раз? Сразу выплывает ответ 24. Хотя, не у всех он выплывает, да...

Для свободной и успешной работы с корнями достаточно знать квадраты чисел от 1 до 20. Причём туда и обратно. Т.е. вы должны легко называть как, скажем, 11 в квадрате, так и корень квадратный из 121. Чтобы добиться такого запоминания, есть два пути. Первый - выучить таблицу квадратов. Это здорово поможет решать примеры. Второй - решать побольше примеров. Это здорово поможет запомнить таблицу квадратов.

И никаких калькуляторов! Только для проверки. Иначе на экзамене будете тормозить нещадно...

Итак, что такое квадратный корень и как извлекать корни - думаю, понятно. Теперь выясним ИЗ ЧЕГО можно их извлекать.

Пунктик второй. Корень, я тебя не знаю!

Из каких чисел можно извлекать квадратные корни? Да почти из любых. Проще понять, из чего нельзя их извлекать.

Попробуем вычислить вот такой корень:

Для этого нужно подобрать число, которое в квадрате даст нам -4. Подбираем.

Что, не подбирается? 2 2 даёт +4. (-2) 2 даёт опять +4! Вот-вот... Нет таких чисел, которые при возведении в квадрат дадут нам отрицательное число! Хотя я такие числа знаю. Но вам не скажу). Поступите в институт - сами узнаете.

Такая же история будет с любым отрицательным числом. Отсюда вывод:

Выражение, в котором под знаком квадратного корня стоит отрицательное число - не имеет смысла ! Это запретная операция. Такая же запретная, как и деление на ноль. Запомните этот факт железно! Или, другими словами:

Квадратные корни из отрицательных чисел извлечь нельзя!

Зато из всех остальных - можно. Например, вполне можно вычислить

На первый взгляд это очень сложно. Подбирать дроби, да в квадрат возводить... Не волнуйтесь. Когда разберёмся со свойствами корней, такие примеры будут сводиться к всё той же таблице квадратов. Жизнь станет проще!

Ну ладно дроби. Но нам ведь ещё попадаются выражения типа:

Ничего страшного. Всё то же самое. Корень квадратный из двух - это число, которое при возведении в квадрат даст нам двойку. Только число это совсем неровное... Вот оно:

Что интересно, эта дробь не кончается никогда... Такие числа называются иррациональными. В квадратных корнях это - самое обычное дело. Кстати, именно поэтому выражения с корнями называют иррациональными . Понятно, что писать всё время такую бесконечную дробь неудобно. Поэтому вместо бесконечной дроби так и оставляют:

Если при решении примера у вас получилось что-то неизвлекаемое, типа:

то так и оставляем. Это и будет ответ.

Нужно чётко понимать, что под значками

Конечно, если корень из числа извлекается ровно , вы обязаны это сделать. Ответ задания в виде, например

вполне себе полноценный ответ.

И, конечно, надо знать на память приблизительные значения:

Это знание здорово помогает оценить ситуацию в сложных заданиях.

Пунктик третий. Самый хитрый.

Основную путаницу в работу с корнями вносит как раз этот пунктик. Именно он придаёт неуверенность в собственных силах... Разберёмся с этим пунктиком как следует!

Для начала опять извлечём квадратный корень их четырёх. Что, уже достал я вас с этим корнем?) Ничего, сейчас интересно будет!

Какое число даст в квадрате 4? Ну два, два - слышу недовольные ответы...

Верно. Два. Но ведь и минус два даст в квадрате 4... А между тем, ответ

правильный, а ответ

грубейшая ошибка. Вот так.

Так в чём же дело?

Действительно, (-2) 2 = 4. И под определение корня квадратного из четырёх минус два вполне подходит... Это тоже корень квадратный из четырёх.

Но! В школьном курсе математики принято считать за квадратные корни только неотрицательные числа! Т.е ноль и все положительные. Даже термин специальный придуман: из числа а - это неотрицательное число, квадрат которого равен а . Отрицательные результаты при извлечении арифметического квадратного корня попросту отбрасываются. В школе все квадратные корни - арифметические . Хотя особо об этом не упоминается.

Ну ладно, это понятно. Это даже и лучше - не возиться с отрицательными результатами... Это ещё не путаница.

Путаница начинается при решении квадратных уравнений. Например, надо решить вот такое уравнение.

Уравнение простое, пишем ответ (как учили):

Такой ответ (совершенно правильный, кстати) - это просто сокращённая запись двух ответов:

Стоп-стоп! Чуть выше я написал, что квадратный корень - число всегда неотрицательное! А здесь один из ответов - отрицательный ! Непорядок. Это первая (но не последняя) проблемка, которая вызывает недоверие к корням... Решим эту проблемку. Запишем ответы (чисто для понимания!) вот так:

Скобки сути ответа не меняют. Просто я отделил скобками знаки от корня . Теперь наглядно видно, что сам корень (в скобках) - число всё равно неотрицательное! А знаки - это результат решения уравнения . Ведь при решении любого уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше уравнение подходит корень из пяти (положительный!) как с плюсом, так и с минусом.

Вот так. Если вы просто извлекаете квадратный корень из чего-либо, вы всегда получаете один неотрицательный результат. Например:

Потому, что это - арифметический квадратный корень .

Но если вы решаете какое-нибудь квадратное уравнение, типа:

то всегда получается два ответа (с плюсом и минусом):

Потому, что это - решение уравнения.

Надеюсь, что такое квадратный корень со своими пунктиками вы уяснили. Теперь осталось узнать, что можно делать с корнями, каковы их свойства. И какие там пунктики и подводные кор... извините, камни!)

Всё это - в следующих уроках.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Слова необходимо не только для правильного выполнения морфемного анализа, но и для грамотного написания большинства слов, т. к. часто необходимо знать верное написание конкретной морфемы.

Морфемика, ее предмет и цели

В русском языкознании существует раздел, посвященный изучению системы морфем и морфемной структуры слов и словоформ, называемый морфемикой. Основной задачей морфемики является изучение и классификация морфем, а также алгоритм членения слова на морфемы.

Морфема, являясь основной единицей морфемики, представляет собой наименьшую В то же время это минимальная единица языка, имеющая значение. Стоит отметить, что морфема имеет различия с единицами всех остальных языковых уровней. Так, от звука она отличается наличием значения, от слова — отсутствием грамматически оформленного наименования, от предложения — тем, что она не представляет собой коммуникативную единицу.

Корень слова

Каждое слово русского языка можно разбить на морфемы. Все морфемы делятся на корневые (собственно корень) и некорневые (приставка, суффикс, окончание). И если некорневые морфемы несут в себе грамматическое значение слова, то корень выражает значение лексическое. Например, в словах "подводный" и "водяной" корень "вод-" несет в себе значение «что-то, связанное с водой». Однако существуют слова, значение которых не заключено именно в корне или в другой морфеме. Например, слово "утренник" в значении детского праздника не выражает свое значение ни в одной из морфем.

Корень является основной частью слова, без которой оно не может существовать. Существует множество слов, которые могут употребляться без приставки, суффикса или окончания (лесник, стул, такси и т. п.), но без корня слово становится простым набором букв, не имеющим смысла. Исключение составляет единственное слово в русском языке, которое не имеет корня. Это слово "вынуть", которое состоит из приставки вы-, суффикса -ну и флексии -ть. Объяснить отсутствие корня в этом слове можно, изучив его этимологию. Дело в том, что в процессе развития языка данное слово изменило свой внешний облик, и вместо изначальной версии "вынять", где можно было выделить корень -н-, вошла в употребление форма "вынуть", где корень можно выделить только этимологически.

Все корни можно разделить на свободные и связанные. Первые могут употребляться как самостоятельно, так и в сочетании с различными флексиями (пожарный, подводный, бегать и т. п.). Вторые употребляются только в сочетании с флексиями (на-д-еть, о-д-еть, раз-д-еть и т. п.).

Корень слова также определяют как общую часть родственных слов. Но и здесь нужно запомнить, что существует достаточно много корней, которые могут встречаться только в одном слове. Например, "увы", "какаду", некоторые географические названия.

Однокоренные слова

Слова, имеющие в своем составе одинаковую часть (корень) и близкие по значению, называются однокоренными. Например: дождь, дождливый, дождевик; стрелять, выстрел, подстреленный.

Чтобы правильно выделить корень в слове, необходимо подобрать как можно больше однокоренных слов. Та часть слова, которая повторяется во всех однокоренных, и будет являться корнем. Однако существуют нюансы, которые стоит учитывать при подборе однокоренных слов.

Во-первых, не стоит путать однокоренные слова с родственными. Все однокоренные являются родственными, т. е. имеют в своем значении что-то общее, но не все родственные являются однокоренными. Это происходит из-за того, что некоторые слова в процессе своего развития утратили изначальный смысл. Например, слова "черный" и "чернила" являются родственными, но при этом имеют разные корни, хотя можно проследить этимологическую связь значений данных слов. В современном языке слово "чернила" в значении «паста, заправляемая в стержень для письма» утратило связь со значением "черный", т. к. чернила могут быть любого цвета. Поэтому, чтобы верно выделить корень в родственных словах, часто необходимо проследить их этимологию.

Во-вторых, при подборе однокоренных слов нельзя использовать формы одного слова. Так, слова "варить", "варка", "варочная" являются однокоренными. А слова "вареный", "вареного", "вареным" являются только формами одного слова.

В-третьих, нельзя забывать, что существуют омонимичные корни. Такие корни звучат и выглядят одинаково, но имеют разные значения. Например, корни в словах "водить" и "водный".

Сложные слова

Выделить корень в слове бывает трудно и тогда, когда оно содержит несколько корней. Такие слова называются сложными. Они образованы путем сложения двух или даже трех слов и сочетают в себе их значения. Чтобы правильно выделить корни в слове, которое является сложным, нужно верно определить его значение. Например, пешеход (ходит пешком), сталелитейный (лить сталь), бетономешалка (мешать бетон). Обычно для образования слов путем сложения используются соединительные гласные -о- (газ-о-провод) и -е- (нефт-е-провод).

Корни с чередованием

В русском языке существуют корни, допускающие несколько вариантов написания гласной или согласной буквы в корне в зависимости от формы слова. Такие корни называются корнями с чередованием. Выделить корень в слове в таких случаях поможет знание возможных вариантов чередований. Так, среди гласных это такие:

О/а (гореть — загар);

О/е/и (жечь — зажигать — ожог);

О/ы (и) (выть — воет, битый — бой);

О/ы/у (высох — высыхать — сухой);

О/нуль звука (сон — сны);

Е/нуль звука (день — дневной).

Правописание таких корней может зависеть от ударения, последующих букв, местоположения и лексического значения и определяется правилами.

Среди согласных выделяют следующие чередования:

Г/ж/з (друг — дружить — друзьями);

К/ч (руки — ручной);

Д/ж/жд (водитель — вожатый — сопровождение);

Х/ш (тихо — тише);

П/пл (слепой — ослепленный);

М/мл (кормит — кормление);

Б/бл (любить — влюблен);

В/вл (ловить — улавливать).

Орфограммы в корне слова

Орфограммой называют то место в слове, где возможно допустить ошибку. Такие места могут находиться в любой части слова, в том числе и в корне. Выделив орфограмму в корне слова, прежде всего нужно определить, проверяемая она или непроверяемая. Правописание непроверяемых орфограмм необходимо проверять по словарю и обязательно запоминать. Среди проверяемых орфограмм выделяют: безударные парных звонких и глухих согласных, правописание непроизносимых согласных. Чтобы выбрать верное написание, необходимо поставить букву, вызывающую сомнение, в сильную позицию. Такой позицией для гласной будет ударная (летать - летчик), а для согласной — перед гласной или сонорной (дуб — дубы, здравствуйте — здравие, зуб — зубная). Для быстрого и правильного подбора проверочных слов необходимо безошибочно выделять корень в однокоренных словах, которые и являются проверочными.

Таким образом, умение правильно выделять корень в слове - один из залогов грамотного письма. Помочь в формировании данного навыка, помимо заучивания правил, несомненно, может чтение. Ведь чем больше человек читает, тем богаче его словарный запас.

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа .

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

2 2 = 4;
8 2 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
20 2 < 576 < 30 2

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

Осталось возвести каждое число в квадрат и сравнить с исходным:

24 2 = (20 + 4) 2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

Поздравляю: сегодня мы будем разбирать корни — одну из самых мозговыносящих тем 8-го класса.:)

Многие путаются в корнях не потому, что они сложные (чего там сложного-то — пара определений и ещё пара свойств), а потому что в большинстве школьных учебников корни определяются через такие дебри, что разобраться в этой писанине могут разве что сами авторы учебников. Да и то лишь с бутылкой хорошего виски.:)

Поэтому сейчас я дам самое правильное и самое грамотное определение корня — единственное, которое вам действительно следует запомнить. А уже затем объясню: зачем всё это нужно и как это применять на практике.

Но сначала запомните один важный момент, про который многие составители учебников почему-то «забывают»:

Корни бывают чётной степени (наш любимый $\sqrt{a}$, а также всякие $\sqrt{a}$ и даже $\sqrt{a}$) и нечётной степени (всякие $\sqrt{a}$, $\sqrt{a}$ и т.д.). И определение корня нечётной степени несколько отличается от чётной.

Вот в этом грёбаном «несколько отличается» скрыто, наверное, 95% всех ошибок и недопонимания, связанного с корнями. Поэтому давайте раз и навсегда разберёмся с терминологией:

Определение. Корень чётной степени n из числа $a$ — это любое неотрицательное число $b$ такое, что ${{b}^{n}}=a$. А корень нечётной степени из того же числа $a$ — это вообще любое число $b$, для которого выполняется всё то же равенство: ${{b}^{n}}=a$.

В любом случае корень обозначается вот так:

\{a}\]

Число $n$ в такой записи называется показателем корня, а число $a$ — подкоренным выражением. В частности, при $n=2$ получим наш «любимый» квадратный корень (кстати, это корень чётной степени), а при $n=3$ — кубический (степень нечётная), который тоже часто встречается в задачах и уравнениях.

Примеры. Классические примеры квадратных корней:

\[\begin{align} & \sqrt{4}=2; \\ & \sqrt{81}=9; \\ & \sqrt{256}=16. \\ \end{align}\]

Кстати, $\sqrt{0}=0$, а $\sqrt{1}=1$. Это вполне логично, поскольку ${{0}^{2}}=0$ и ${{1}^{2}}=1$.

Кубические корни тоже часто встречаются — не надо их бояться:

\[\begin{align} & \sqrt{27}=3; \\ & \sqrt{-64}=-4; \\ & \sqrt{343}=7. \\ \end{align}\]

Ну, и парочка «экзотических примеров»:

\[\begin{align} & \sqrt{81}=3; \\ & \sqrt{-32}=-2. \\ \end{align}\]

Если вы не поняли, в чём разница между чётной и нечётной степенью — перечитайте определение ещё раз. Это очень важно!

А мы тем временем рассмотрим одну неприятную особенность корней, из-за которой нам и потребовалось вводить раздельное определение для чётных и нечётных показателей.

Зачем вообще нужны корни?

Прочитав определение, многие ученики спросят: «Что курили математики, когда это придумывали?» И вправду: зачем вообще нужны все эти корни?

Чтобы ответить на этот вопрос, вернёмся на минутку в начальные классы. Вспомните: в те далёкие времена, когда деревья были зеленее, а пельмени вкуснее, основная наша забота была в том, чтобы правильно умножать числа. Ну, что-нибудь в духе «пять на пять — двадцать пять», вот это вот всё. Но ведь можно умножать числа не парами, а тройками, четвёрками и вообще целыми комплектами:

\[\begin{align} & 5\cdot 5=25; \\ & 5\cdot 5\cdot 5=125; \\ & 5\cdot 5\cdot 5\cdot 5=625; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5=3125; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625. \end{align}\]

Однако суть не в этом. Фишка в другом: математики — людишки ленивые, поэтому им было в лом записывать умножение десяти пятёрок вот так:

Поэтому они придумали степени. Почему бы вместо длинной строки не записать количество множителей в виде верхнего индекса? Типа вот такого:

Это же очень удобно! Все вычисления сокращаются в разы, и можно не тратить кучу листов пергамента блокнотиков на запись какого-нибудь 5 183 . Такую запись назвали степенью числа, у неё нашли кучу свойств, но счастье оказалось недолгим.

После грандиозной пьянки, которую организовали как раз по поводу «открытия» степеней, какой-то особо упоротый математик вдруг спросил: «А что, если нам известна степень числа, но неизвестно само число?» Вот, действительно, если нам известно, что некое число $b$, допустим, в 5-й степени даёт 243, то как нам догадаться, чему равно само число $b$?

Проблема эта оказалась гораздо более глобальной, чем может показаться на первый взгляд. Потому что выяснилось, что для большинства «готовых» степеней таких «исходных» чисел нет. Судите сами:

\[\begin{align} & {{b}^{3}}=27\Rightarrow b=3\cdot 3\cdot 3\Rightarrow b=3; \\ & {{b}^{3}}=64\Rightarrow b=4\cdot 4\cdot 4\Rightarrow b=4. \\ \end{align}\]

А, что если ${{b}^{3}}=50$? Получается, что нужно найти некое число, которое будучи трижды умноженное само на себя даст нам 50. Но что это за число? Оно явно больше 3, поскольку 3 3 = 27 < 50. С тем же успехом оно меньше 4, поскольку 4 3 = 64 > 50. Т.е. это число лежит где-то между тройкой и четвёркой, но чему оно равно — фиг поймёшь.

Именно для этого математики и придумали корни $n$-й степени. Именно для этого ввели значок радикала $\sqrt{*}$. Чтобы обозначить то самое число $b$, которое в указанной степени даст нам заранее известную величину

\[\sqrt[n]{a}=b\Rightarrow {{b}^{n}}=a\]

Не спорю: зачастую эти корни легко считаются — мы видели несколько таких примеров выше. Но всё-таки в большинстве случаев, если вы загадаете произвольное число, а затем попробуете извлечь из него корень произвольной степени, вас ждёт жестокий облом.

Да что там! Даже самый простой и всем знакомый $\sqrt{2}$ нельзя представить в привычном нам виде — как целое число или дробушка. А если вы вобьёте это число в калькулятор, то увидите вот это:

\[\sqrt{2}=1,414213562...\]

Как видите, после запятой идёт бесконечная последовательность цифр, которые не подчиняются никакой логике. Можно, конечно, округлить это число, чтобы быстро сравнить с другими числами. Например:

\[\sqrt{2}=1,4142...\approx 1,4 \lt 1,5\]

Или вот ещё пример:

\[\sqrt{3}=1,73205...\approx 1,7 \gt 1,5\]

Но все эти округления, во-первых, довольно грубые; а во-вторых, работать с примерными значениями тоже надо уметь, иначе можно словить кучу неочевидных ошибок (кстати, навык сравнения и округления в обязательном порядке проверяют на профильном ЕГЭ).

Поэтому в серьёзной математике без корней не обойтись — они являются такими же равноправными представителями множества всех действительных чисел $\mathbb{R}$, как и давно знакомые нам дроби и целые числа.

Невозможность представить корень в виде дроби вида $\frac{p}{q}$ означает, что данный корень не является рациональным числом. Такие числа называются иррациональными, и их нельзя точно представить иначе как с помощью радикала, либо других специально предназначенных для этого конструкций (логарифмов, степеней, пределов и т.д.). Но об этом — в другой раз.

Рассмотрим несколько примеров, где после всех вычислений иррациональные числа всё же останутся в ответе.

\[\begin{align} & \sqrt{2+\sqrt{27}}=\sqrt{2+3}=\sqrt{5}\approx 2,236... \\ & \sqrt{\sqrt{-32}}=\sqrt{-2}\approx -1,2599... \\ \end{align}\]

Естественно, по внешнему виду корня практически невозможно догадаться о том, какие числа будут идти после запятой. Впрочем, можно, посчитать на калькуляторе, но даже самый совершенный калькулятор дат нам лишь несколько первых цифр иррационального числа. Поэтому гораздо правильнее записать ответы в виде $\sqrt{5}$ и $\sqrt{-2}$.

Именно для этого их и придумали. Чтобы удобно записывать ответы.

Почему нужны два определения?

Внимательный читатель уже наверняка заметил, что все квадратные корни, приведённые в примерах, извлекаются из положительных чисел. Ну, в крайнем случае из нуля. А вот кубические корни невозмутимо извлекаются абсолютно из любого числа — хоть положительного, хоть отрицательного.

Почему так происходит? Взгляните на график функции $y={{x}^{2}}$:

График квадратичной функции даёт два корня: положительный и отрицательный

Попробуем с помощью этого графика посчитать $\sqrt{4}$. Для этого на графике проведена горизонтальная линия $y=4$ (отмечена красным цветом), которая пересекается с параболой в двух точках:${{x}_{1}}=2$ и ${{x}_{2}}=-2$. Это вполне логично, поскольку

С первым числом всё понятно — оно положительное, поэтому оно и есть корень:

Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt{4}=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)

В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y , т.е. не принимает отрицательных значений.

Подобная проблема возникает у всех корней с чётным показателем:

  1. Строго говоря, корней с чётным показателем $n$ у каждого положительного числа будет сразу две штуки;
  2. Из отрицательных чисел корень с чётным $n$ вообще не извлекается.

Именно поэтому в определении корня чётной степени $n$ специально оговаривается, что ответ должен быть неотрицательным числом. Так мы избавляемся от неоднозначности.

Зато для нечётных $n$ такой проблемы нет. Чтобы убедиться в этом, давайте взглянем на график функции $y={{x}^{3}}$:

Кубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа

Из этого графика можно сделать два вывода:

  1. Ветви кубической параболы, в отличие от обычной, уходят на бесконечность в обе стороны — и вверх, и вниз. Поэтому на какой бы высоте мы ни проводили горизонтальную прямую, эта прямая обязательно пересечётся с нашим графиком. Следовательно, кубический корень можно извлечь всегда, абсолютно из любого числа;
  2. Кроме того, такое пересечение всегда будет единственным, поэтому не нужно думать, какое число считать «правильным» корнем, а на какое — забить. Именно поэтому определение корней для нечётной степени проще, чем для чётной (отсутствует требование неотрицательности).

Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.

Да, я не спорю: что такое арифметический корень — тоже надо знать. И я подробно расскажу об этом в отдельном уроке. Сегодня мы тоже поговорим о нём, поскольку без него все размышления о корнях $n$-й кратности были бы неполными.

Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.

А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:

  1. Корень чётной степени существует лишь из неотрицательного числа и сам всегда является неотрицательным числом. Для отрицательных чисел такой корень неопределён.
  2. А вот корень нечётной степени существует из любого числа и сам может быть любым числом: для положительных чисел он положителен, а для отрицательных — как намекает кэп, отрицательный.

Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.

Основные свойства и ограничения

У корней много странных свойств и ограничений — об этом будет отдельный урок. Поэтому сейчас мы рассмотрим лишь самую важную «фишку», которая относится лишь к корням с чётным показателем. Запишем это свойство в виде формулы:

\[\sqrt{{{x}^{2n}}}=\left| x \right|\]

Другими словами, если возвести число в чётную степень, а затем из этого извлечь корень той же степени, мы получим не исходное число, а его модуль . Это простая теорема, которая легко доказывается (достаточно отдельно рассмотреть неотрицательные $x$, а затем отдельно — отрицательные). О ней постоянно талдычат учителя, её дают в каждом школьном учебнике. Но как только дело доходит до решения иррациональных уравнений (т.е. уравнений, содержащих знак радикала), ученики дружно забывают эту формулу.

Чтобы детально разобраться в вопросе, давайте на минуту забудем все формулы и попробуем посчитать два числа напролом:

\[\sqrt{{{3}^{4}}}=?\quad \sqrt{{{\left(-3 \right)}^{4}}}=?\]

Это очень простые примеры. Первый пример решит большинство людишек, а вот на втором многие залипают. Чтобы без проблем решить любую подобную хрень, всегда учитывайте порядок действий:

  1. Сначала число возводится в четвёртую степень. Ну, это как бы несложно. Получится новое число, которое даже в таблице умножения можно найти;
  2. И вот уже из этого нового числа необходимо извлечь корень четвёртой степени. Т.е. никакого «сокращения» корней и степеней не происходит — это последовательные действия.

Раберёмся с первым выражением: $\sqrt{{{3}^{4}}}$. Очевидно, что сначала надо посчитать выражение, стоящее под корнем:

\[{{3}^{4}}=3\cdot 3\cdot 3\cdot 3=81\]

Затем извлекаем корень четвёртой степени из числа 81:

Теперь сделаем то же самое со вторым выражением. Сначала возводим число −3 в четвёртую степени, для чего потребуется умножить его само на себя 4 раза:

\[{{\left(-3 \right)}^{4}}=\left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)=81\]

Получили положительное число, поскольку общее количество минусов в произведении — 4 штуки, и они все взаимно уничтожится (ведь минус на минус даёт плюс). Дальше вновь извлекаем корень:

В принципе, эту строчку можно было не писать, поскольку и ежу понятно, что ответ получится один и тот же. Т.е. чётный корень из той же чётной степени «сжигает» минусы, и в этом смысле результат неотличим от обычного модуля:

\[\begin{align} & \sqrt{{{3}^{4}}}=\left| 3 \right|=3; \\ & \sqrt{{{\left(-3 \right)}^{4}}}=\left| -3 \right|=3. \\ \end{align}\]

Эти вычисления хорошо согласуются с определением корня чётной степени: результат всегда неотрицателен, да и под знаком радикала тоже всегда стоит неотрицательное число. В противном случае корень не определён.

Замечание по поводу порядка действий

  1. Запись $\sqrt{{{a}^{2}}}$ означает, что мы сначала возводим число $a$ в квадрат, а затем извлекаем из полученного значения квадратный корень. Следовательно, мы можем быть уверены, что под знаком корня всегда сидит неотрицательное число, поскольку ${{a}^{2}}\ge 0$ в любом случае;
  2. А вот запись ${{\left(\sqrt{a} \right)}^{2}}$, напротив, означает, что мы сначала извлекаем корень из некого числа $a$ и лишь затем возводим результат в квадрат. Поэтому число $a$ ни в коем случае не может быть отрицательным — это обязательное требование, заложенное в определение.

Таким образом, ни в коем случае нельзя бездумно сокращать корни и степени, тем самым якобы «упрощая» исходное выражение. Потому что если под корнем стоит отрицательное число, а его показатель является чётным, мы получим кучу проблем.

Впрочем, все эти проблемы актуальны лишь для чётных показателей.

Вынесение минуса из-под знака корня

Естественно, у корней с нечётными показателями тоже есть своя фишка, которой в принципе не бывает у чётных. А именно:

\[\sqrt{-a}=-\sqrt{a}\]

Короче говоря, можно выносить минус из-под знака корней нечётной степени. Это очень полезное свойство, которое позволяет «вышвырнуть» все минусы наружу:

\[\begin{align} & \sqrt{-8}=-\sqrt{8}=-2; \\ & \sqrt{-27}\cdot \sqrt{-32}=-\sqrt{27}\cdot \left(-\sqrt{32} \right)= \\ & =\sqrt{27}\cdot \sqrt{32}= \\ & =3\cdot 2=6. \end{align}\]

Это простое свойство значительно упрощает многие вычисления. Теперь не нужно переживать: вдруг под корнем затесалось отрицательное выражение, а степень у корня оказалась чётной? Достаточно лишь «вышвырнуть» все минусы за пределы корней, после чего их можно будет умножать друг на друга, делить и вообще делать многие подозрительные вещи, которые в случае с «классическими» корнями гарантированно приведут нас к ошибке.

И вот тут на сцену выходит ещё одно определение — то самое, с которого в большинстве школ и начинают изучение иррациональных выражений. И без которого наши рассуждения были бы неполными. Встречайте!

Арифметический корень

Давайте предположим на минутку, что под знаком корня могут находиться лишь положительные числа или в крайнем случае ноль. Забьём на чётные/нечётные показатели, забьём на все определения, приведённые выше — будем работать только с неотрицательными числами. Что тогда?

А тогда мы получим арифметический корень — он частично пересекается с нашими «стандартными» определениями, но всё же отличается от них.

Определение. Арифметическим корнем $n$-й степени из неотрицательного числа $a$ называется такое неотрицательное число $b$, что ${{b}^{n}}=a$.

Как видим, нас больше не интересует чётность. Взамен неё появилось новое ограничение: подкоренное выражение теперь всегда неотрицательно, да и сам корень тоже неотрицателен.

Чтобы лучше понять, чем арифметический корень отличается от обычного, взгляните на уже знакомые нам графики квадратной и кубической параболы:

Область поиска арифметического корня — неотрицательные числа

Как видите, отныне нас интересуют лишь те куски графиков, которые расположены в первой координатной четверти — там, где координаты $x$ и $y$ положительны (или хотя бы ноль). Больше не нужно смотреть на показатель, чтобы понять: имеем мы право ставить под корень отрицательное число или нет. Потому что отрицательные числа больше в принципе не рассматриваются.

Возможно, вы спросите: «Ну и зачем нам такое кастрированное определение?» Или: «Почему нельзя обойтись стандартным определением, данным выше?»

Что ж, приведу всего одно свойство, из-за которого новое определение становится целесообразным. Например, правило возведения в степень:

\[\sqrt[n]{a}=\sqrt{{{a}^{k}}}\]

Обратите внимание: мы можем возвести подкоренное выражение в любую степень и одновременно умножить на эту же степень показатель корня — и в результате получится то же самое число! Вот примеры:

\[\begin{align} & \sqrt{5}=\sqrt{{{5}^{2}}}=\sqrt{25} \\ & \sqrt{2}=\sqrt{{{2}^{4}}}=\sqrt{16} \\ \end{align}\]

Ну и что в этом такого? Почему мы не могли сделать это раньше? А вот почему. Рассмотрим простое выражение: $\sqrt{-2}$ — это число вполне нормальное в нашем классическом понимании, но абсолютно недопустимо с точки зрения арифметического корня. Попробуем преобразовать его:

$\begin{align} & \sqrt{-2}=-\sqrt{2}=-\sqrt{{{2}^{2}}}=-\sqrt{4} \lt 0; \\ & \sqrt{-2}=\sqrt{{{\left(-2 \right)}^{2}}}=\sqrt{4} \gt 0. \\ \end{align}$

Как видите, в первом случае мы вынесли минус из-под радикала (имеем полное право, т.к. показатель нечётный), а во втором — воспользовались указанной выше формулой. Т.е. с точки зрения математики всё сделано по правилам.

WTF?! Как одно и то же число может быть и положительным, и отрицательным? Никак. Просто формула возведения в степень, которая прекрасно работает для положительных чисел и нуля, начинает выдавать полную ересь в случае с отрицательными числами.

Вот для того, чтобы избавиться от подобной неоднозначности, и придумали арифметические корни. Им посвящён отдельный большой урок, где мы подробно рассматриваем все их свойства. Так что сейчас не будем на них останавливаться — урок и так получился слишком затянутым.

Алгебраический корень: для тех, кто хочет знать больше

Долго думал: выносить эту тему в отдельный параграф или нет. В итоге решил оставить здесь. Данный материал предназначен для тех, кто хочет понять корни ещё лучше — уже не на среднем «школьном» уровне, а на приближенном к олимпиадному.

Так вот: помимо «классического» определения корня $n$-й степени из числа и связанного с ним разделения на чётные и нечётные показатели есть более «взрослое» определение, которое вообще не зависит от чётности и прочих тонкостей. Это называется алгебраическим корнем.

Определение. Алгебраический корень $n$-й степени из числа любого $a$ — это множество всех чисел $b$ таких, что ${{b}^{n}}=a$. Для таких корней нет устоявшегося обозначения, поэтому просто поставим чёрточку сверху:

\[\overline{\sqrt[n]{a}}=\left\{ b\left| b\in \mathbb{R};{{b}^{n}}=a \right. \right\}\]

Принципиальное отличие от стандартного определения, приведённого в начале урока, состоит в том, что алгебраический корень — это не конкретное число, а множество. А поскольку мы работаем с действительными числами, это множество бывает лишь трёх типов:

  1. Пустое множество. Возникает в случае, когда требуется найти алгебраический корень чётной степени из отрицательного числа;
  2. Множество, состоящее из одного-единственного элемента. Все корни нечётных степеней, а также корни чётных степеней из нуля попадают в эту категорию;
  3. Наконец, множество может включать два числа — те самые ${{x}_{1}}$ и ${{x}_{2}}=-{{x}_{1}}$, которое мы видели на графике квадратичной функции. Соответственно, такой расклад возможен лишь при извлечении корня чётной степени из положительного числа.

Последний случай заслуживает более подробного рассмотрения. Посчитаем парочку примеров, чтобы понять разницу.

Пример. Вычислите выражения:

\[\overline{\sqrt{4}};\quad \overline{\sqrt{-27}};\quad \overline{\sqrt{-16}}.\]

Решение. С первым выражением всё просто:

\[\overline{\sqrt{4}}=\left\{ 2;-2 \right\}\]

Именно два числа входят в состав множества. Потому что каждое из них в квадрате даёт четвёрку.

\[\overline{\sqrt{-27}}=\left\{ -3 \right\}\]

Тут мы видим множество, состоящее лишь из одного числа. Это вполне логично, поскольку показатель корня — нечётный.

Наконец, последнее выражение:

\[\overline{\sqrt{-16}}=\varnothing \]

Получили пустое множество. Потому что нет ни одного действительного числа, которое при возведении в четвёртую (т.е. чётную!) степень даст нам отрицательное число −16.

Финальное замечание. Обратите внимание: я не случайно везде отмечал, что мы работаем с действительными числами. Потому что есть ещё комплексные числа — там вполне можно посчитать и $\sqrt{-16}$, и многие другие странные вещи.

Однако в современном школьном курсе математики комплексные числа почти не встречаются. Их вычеркнули из большинства учебников, поскольку наши чиновники считают эту тему «слишком сложной для понимания».

 

 

Это интересно: