→ Линейные электрические цепи. Линейные электрические цепи постоянного тока Линейные электрические цепи режимы работы

Линейные электрические цепи. Линейные электрические цепи постоянного тока Линейные электрические цепи режимы работы

Настоящее пособие посвящено в основном рассмотрению электрических цепей, в которых сопротивления, индуктивности и емкости не зависят от значений и направлений токов и напряжений. Такие электрические цепи, как и сами элементы, из которых они состоят, называются линейными, так как напряжение и ток в каждом элементе связаны между собой линейным уравнением – алгебраическим или дифференциальным.

Действительно, в случае, если параметр R не зависит от u и i , то закон Ома (1.1) выражает линейную зависимость между напряжением и током.

Если L и С не зависят от u и i , то напряжение и ток связаны линейными дифференциальными уравнениями (1.4) в случае индуктивности и (1.8) в случае емкости.

Что касается активных элементов линейных электрических цепей, то условием линейности идеального источника напряжения является независимость величины ЭДС от тока, проходящего через источник, а условием линейности идеального источника тока является независимость тока от напряжения на его зажимах.

Реальные электротехнические и радиотехнические устройства, строго говоря, не подчиняются линейному закону. При прохождении тока через проводник выделяется тепло, проводник нагревается и его сопротивление изменяется. С изменением тока в катушке индуктивности с ферромагнитным сердечником соотношение между потокосцеплением и током, т. е. параметр L , не остается постоянным. В зависимости от диэлектрика в большей или меньшей степени изменяется и емкость конденсатора в функции от заряда (или приложенного напряжения). К нелинейным устройствам относятся, кроме того, электронные, ионные и полупроводниковые приборы, параметры которых зависят от тока и напряжения.

Если в рабочем диапазоне, на который рассчитывается то или иное устройство, т.е. при заданных ограниченных пределах изменений напряжения, тока и т.п., закон линейности с достаточной для практики степенью точности сохраняется, то такое устройство рассматривается как линейное.

Исследование и расчет линейных цепей сопряжены, как правило, с меньшими трудностями, чем исследование и расчет нелинейных цепей. Поэтому в тех случаях, когда линейный закон достаточно близко отражает физическую действительность, цепь рассматривается как линейная.

В радиоэлектронике и автоматике напряжение и ток, подводимые к цепи, принято называть воздействующей функцией или входным сигналом, а напряжение и ток, возникающие при этом в какой-либо интересующей нас части цепи, называют реакцией цепи или выходным сигналом (в литературе встречается также термин отклик (от английского «respons»)). Сигналы можно рассматривать как функции времени.

В линейной электрической цепи соблюдаются принципы наложения и пропорциональности сигналов.

Принцип наложения заключается в том, что если входным сигналам f 1вх (t ) и f 2вх (t ), порознь подводимым к цепи, соответствуют выходные сигналы f 1вых (t ) и f 2вых (t ), то суммарному входному сигналу f 1вх (t ) + f 2вх (t ) будет соответствовать выходной сигнал f 1вых (t ) + f 2вых (t ).

Принцип пропорциональности состоит в том, что входному сигналу Аf вх (t Аf вых (t ), где А - постоянный множитель.

Если с течением времени параметры и схема цепи сохраняются неизменными, то цепь называется инвариантной во времени.

Допустим, что заданная линейная цепь до момента t = 0 пассивна. Условие инвариантности цепи во времени означает, что если входному сигналу f вх (t ) соответствует выходной сигнал f вых (t ), то входному сигналу f вх (t+ t), запаздывающему по сравнению с первым на время t, будет соответствовать выходной сигнал f вых (t+ t).

Отсюда можно заключить, что для линейных электрических цепей, инвариантных во времени, выполняется следующее условие: дифференцирование или интегрирование входного сигнала влечет за собой дифференцирование или соответственно интегрирование выходного сигнала. Действительно, пусть по условию инвариантности входному сигналу f вх (t+ Dt ) соответствует выходной f вых (t+ Dt ). Если за входной сигнал принять , то по условию линейности и инвариантности цепи выходной сигнал будет равен: . Устремив Dt к нулю в пределе получим входной и выходной сигналы и .

1.1.Элементы электрических цепей постоянного тока

Электромагнитные устройства с происходящими в них физическими процессами можно заменить некоторым расчетным эквивалентом – электрической цепью (ЭЦ).

Электрической цепью называют совокупность источников электрической энергии, соединенных с нагрузками. Электромагнитные процессы в ЭЦ можно описать с помощью понятий: ток – I (А), напряжение – U (В), электродвижущая сила (ЭДС) – Е (В), электрический потенциал в точке а – φ a , сопротивление – R (Ом), проводимость – g (См), индуктивность – L (Гн), емкость – С (Ф).

Постоянный ток, не изменяющийся во времени ни по величине, ни по направлению, представляет собой упорядоченное «направленное» движение электрических зарядов. Носителями зарядов в металлах являются электроны, в полупроводниках – дырки и электроны, в жидкостях – ионы, в газовом разряде – электроны и ионы. Упорядоченное движение носителей зарядов в проводнике вызывается электрическим полем, создаваемым источниками электрической энергии.

Источник энергии характеризуется величиной и направлением ЭДС и величиной внутреннего сопротивления.

На рис. 1.1а)изображена схема неразветвленной электрической цепи.

в)
а)
б)

Зависимость протекающего по сопротивлению R тока от напряжения на этом сопротивлении I=f(U), называется вольтамперной характеристикой (ВАХ). Сопротивления, ВАХ которых – прямые линии (рис.1.1.б.), называются линейными, а электрические цепи с такими сопротивлениями – линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями, называют нелинейными (рис. 1.1.в.), а электрические цепи с таким сопротивлениями − нелинейными. В неразветвленной цепи через каждый участок протекает один и тот же ток. В разветвленной цепи, представленной на рис.1.2., в каждой ветви протекает свой ток.

Ветвью называется участок цепи, образованный последовательно соединенными элементами, заключенными между двумя узлами а и b (рис.1.2.). Узел – это точка цепи, в которой сходится не менее трех ветвей. Если в месте пересечения двух линий нет электрического соединения, то точка не ставится.

1.2. Закон Ома для участка цепи

Напряжение U ab на участке a-b ЭЦ (рис.1.3.) понимают разность потенциалов между крайними точками этого участка. Ток I течет от точки «а» большего потенциала к точке «b» меньшего потенциала, т.е. на величину падения напряжения на сопротивлении R

а)
Рис. 1.4.

На рис. 1.4. (а и б) показаны участки цепей с источником ЭДС, по которым протекает ток I . Найдем разность потенциалов (напряжение) между точками «а» и «с» . Согласно определению в обоих случаях имеем

На рис.1.4.а) перемещение от точки «с» к точке «b» является встречным направлению ЭДС Е , поэтому на величину Е

Потенциал в точке «b» на рис. 1.4.б)оказывается выше, чем в точке с на величину ЭДС Е

Поскольку ток течет от более высокого потенциала к более низкому, в обеих схемах а и b рис. 1.4. потенциал точки а выше потенциала точки b на величину падения напряжения на сопротивлении R

Таким образом, на рис. 1.4.а)

,

а на рис. 1.4.б).

, или .

Т.о., для участка цепи, содержащего источник ЭДС, можно найти ток этого участка по разности потенциалов .

Ток для схемы рис. 1.4.а) ,

для схемы рис.1.4.б) .

Полученные уравнения выражают закон Ома для участков цепи, включающих источники ЭДС, направленные по току и против тока.

1.3. Источник ЭДС и источник тока

Источник энергии в схеме рис. 1.5.а), очерченный пунктирной линией, включает источник ЭДС Е и внутреннее сопротивление r вт .

Внешняя характеристика источника напряжения (или ВАХ) в общем случае определяется как ,

где U xx − напряжение при разомкнутой цепи нагрузки. Этому выражению соответствует прямая наклонная линия на рис. 1.5.а).

а)
б)
Рис. 1. 5.

в)
б)
а)

Рис. 1.6.

Рассмотрим два крайних случая.

1) При и , получим , тогда ВАХ − прямая линия, источник ЭДС (рис. 1.6.б) представляет собой идеализированный источник питания, напряжение на зажимах которого не зависит от величины тока.

2) Если у источника питания повышается ЭДС и внутреннее сопротивление , , то , тогда . Ток источника тока , и ВАХ примет вид, показанный на рис.1.6.в).

Следовательно, источник тока представляет собой идеализированный источник питания, в котором ток не зависит от сопротивления нагрузки.

При построении эквивалентных схем замещения ветви, содержащие источники напряжения, замыкают накоротко (r вт =0), а ветви с источниками тока ликвидируют (т. к. ). Ток в нагрузке для схем рис. 1.6.б)и в) одинаков;

для источника ЭДС , для источника тока .

Осуществим переход от схемы с источником тока к схеме с источником ЭДС. Пусть в схеме б) =50 А, =2 Ом, в схеме а) ЭДС =100 В. Следовательно, параметры эквивалентной схемы рис.1.5.а) равны = 100 В, = 2 Ом.

Можно пользоваться любым эквивалентом, но в основном пользуются источником напряжения.

1.4. Методы расчета электрических цепей постоянного тока

1.4.1.Расчет по законам Кирхгофа

Все ЭЦ подчиняются первому и второму законам Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко. Алгебраическая сумма токов, приходящих к любому узлу схемы, равна нулю. Сумма токов, приходящих к узлу, равна сумме токов, уходящих от узла.

Согласно 2-й формулировке .

Физически 1-й закон Кирхгофа означает, что при движении электронов по цепи ни в одном из узлов заряды не накапливаются.

Второй закон Кирхгофа так же можно сформулировать двояко. Алгебраическая сумма падений напряжений на резистивных элементах в любом замкнутом контуре равно алгебраической сумме ЭДС. .

В каждую из сумм составляющие слагаемые входят со знаком «+» , если они совпадают с направлением обхода контура, и со знаком «-» , если не совпадают.

Алгебраическая сумма напряжений участков вдоль любого замкнутого контура равна нулю ,

где m – число участков контура, так, для периферийного контура схемы рис.1.8. имеем .

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменений токов и напряжений во времени.

При составлении уравнений для расчетов токов в ветвях схемы с помощью законов Кирхгофа учитываем, что в каждой ветви течет свой ток.

Рис. 1.8.

Обозначим число всех ветвей схемы через «б» , число ветвей, содержащих источники тока, через «б ист.т » , и число узлов – через «у». Так как токи в ветвях с источниками тока неизвестны, то число неизвестных токов запишем как «б» - «б ист.т » .

Перед тем как составить уравнения, необходимо а) произвольно выбрать положительные направления токов в ветвях и обозначить их на схеме; б) выбрать положительные направления контуров для составления уравнений по 2-ому закону Кирхгофа.

Желательно во всех контурах положительные направления обхода выбирать одинаковыми, например, по часовой стрелке, как показано на рис. 1.9.

Чтобы получить независимые уравнения, по 1-ому закону Кирхгофа составляют число уравнений, равное числу узлов без единицы, т.е. «у-1» . По 2-ому закону Кирхгофа составляют число уравнений, равное числу ветвей без источников тока б - б ист.т , за вычетом числа уравнений, составленных по 1- му закону Кирхгофа. В рассмотренном (б - б ист.т)-(у -1) = 3 – 2 + 1 = 2.

При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в контуры, для которых уже записаны уравнения. Такие контуры условно можно назвать независимыми.

По 1- ому закону Кирхгофа составляем одно уравнение .

По 2-ому закону Кирхгофа надо составить два уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

Для контура , знак «+» взят перед , потому что направление тока совпадает с направлением обхода контура; знак «-» перед показывает, что направление встречно обходу контура.

Для контура .

Используя законы Кирхгофа, можно для любой разветвленной электрической цепи составить необходимое число уравнений, путем совместного решения которых можно найти все определяемые величины (например, токи), а также установить зависимости между ними.

1.4.2. Преобразование ЭЦ с различным соединением сопротивлений

1. Последовательным соединением сопротивлений называется такое, когда конец первого сопротивления соединяется с началом второго, конец второго сопротивления с началом третьего и т.д. Начало первого сопротивления и конец последнего подключаются к источнику питания или к каким-либо точкам ЭЦ (рис. 1. 9.). Во всех сопротивлениях протекает один и

Рис. 1.9.
тот же ток.

Рис. 1. 9.

Ток в цепи, напряжения на сопротивлениях и потребляемые ими мощности определяются следующими соотношениями.

1. Эквивалентное сопротивление электрической цепи .

2. Ток в сопротивлениях цепи .

3. Напряжение и мощность, подводимые к электрической цепи с последовательным соединением сопротивлений равны, соответственно, сумме напряжений и мощностей ,

4. Напряжение и мощности распределяются пропорционально сопротивлениям .

2. При параллельном соединении сопротивлений соединяются между собой как начало всех сопротивлений, так и их концы (рис. 1.10.).

Характерным для параллельного соединения является одно и то же напряжение на зажимах всех сопротивлений. Параллельно соединяются обычно различные приемники электрической энергии, рассчитанные на одно и то же напряжение. При параллельном соединении не требуется согласовывать номинальные данные приемников, возможно включение и отключение любых приемников независимо от остальных, а при выходе из строя любого из них остальные остаются включенными.

б)
а)
Рис. 1. 10.

Параллельное соединение можно применить, если требуется уменьшить сопротивления какого-либо участка электрической цепи, как показано на рис. 1.10.б).

Токи и мощности параллельно соединенных ветвей рис.1.10.а) при не зависят друг от друга.

1. Общий ток равен сумме токов параллельно соединенных ветвей

где: − эквивалентная проводимость, равная

− эквивалентное сопротивление, .

2. Токи и мощности в ветвях в ветвях вычисляются по формулам ; ; ; .

3. Отношение токов и мощностей равно отношению проводимостей и обратно пропорционально отношению сопротивлений

.

При увеличении параллельно соединенных сопротивлений эквивалентная проводимость ЭЦ увеличивается, а эквивалентное сопротивление уменьшается, что приводит к увеличению тока. Если напряжение остается const , то увеличивается также общая мощность.

3. Смешанным или последовательно-параллельным называется такое соединение сопротивлений, при котором на одних участках ЭЦ сопротивления соединены параллельно, а на других последовательно.

Анализ и расчет ЭЦ со смешанным соединением сопротивлений производится методом преобразований. Электрическая цепь (рис. 1.11.а) заменяется последовательно эквивалентными цепями до образования схемы, изображенной на рис. 1.11.б).

б)
а)
Рис. 1.11.

В соединении «треугольником» конец одного из сопротивлений соединяется с началом следующего и т.д., а узлы a,b,c подключаются к остальной части ЭЦ. В соединении «звездой» все концы соединяются вместе, а начала фаз подключаются к схеме. Если заменить сопротивление , , , соединенные в треугольник, эквивалентными сопротивлениями, соединенными звездой, то получим цепи со смешанным соединением сопротивлений.

Преобразование «звезды» в «треугольник»

б)
а)
Рис. 1. 12.

После замены токи и направления должны остаться без изменений.

Для «треугольника» ;

Для соединения звездой

По условию эквивалентности эквивалентные сопротивление обеих схем равны , следовательно, можно записать

1) ;

Структуры соединением «треугольник» и «звезда» по отношению к узлам симметричны, поэтому циклично запишем

2) ;

3) .

Сложим 1) и 3), вычтем 2), всё поделим на 2, получим

, , .

Если в «треугольнике» равны, то и в «звезде» равны: .

Возможно обратное преобразование звезды из резистивных элементов в эквивалентный треугольник. Для этого надо попарно перемножить 1) и 3) и сложить, затем вынести общий множитель и полученное уравнение разделить на 3)уравнение, т.е. . Далее поочередно поделить то же уравнение на и .

Путем циклической подстановки индексов при преобразовании звезды в треугольник получим

, , .

На рис. 1.13. поясняется упрощение схемы путем последовательной замены эквивалентными цепями при преобразовании «треугольника» в «звезду».

Рис. 1.14
В схеме рис. 1.14.два независимых контура. Допустим, что в левом контуре по часовой стрелке течет контурный ток , в правом – контурный ток . Для каждого из контуров составим уравнение по II закону Кирхгофа.

Для первого контура , или

Для второго контура , или

В уравнении для 1-го контура множитель при токе , являющийся суммой сопротивлений первого контура, обозначим через . Множитель при токе , взятый со знаком «-» , обозначим через . Уравнения для 1-го и 2-го контуров примут вид , , здесь

; ;

где − полное или собственное сопротивление первого и второго контуров, соответственно.

− взаимное сопротивление смежной ветви между первым и вторым контурами, взятые со знаком «-» .

− контурные ЭДС первого и второго контуров, равные алгебраической сумме ЭДС, входящих в эти контуры.

Со знаком «+» входят ЭДС, направление которых совпадает с направлением обхода контура.

Отметим, что члены, содержащие полные контурные сопротивления, положительны, а взаимные – отрицательны.

Если в схеме будет три контура, то система уравнений примет вид

Или в матричной форме

, , .

Если в электрической цепи имеется «n» независимых контуров, то количество уравнений тоже равно n . Решение удобно проверить методами Крамера и Гаусса.

Общее решение системы n уравнений относительного тока

где и − определители системы.

По найденным токам ищем действительные токи ; ; ; ; , находим из 1-го закона Кирхгофа.

1.4.4. Метод узловых потенциалов.

б)

Рис. 1. 15.
По 1-му закону Кирхгофа для 1-го узла

, ;

или через проводимости

для 2-го узла

, ,

1) Узловая проводимость узла − это сумма проводимости ветвей, сходящихся в данном узле.

; ; .

2) Взаимная проводимость двух любых узлов − сумма проводимости ветвей, включённых между этими узлами.

3) Узловой ток − сумма произведений ЭДС на проводимости () ветвей, сходящихся в данном узле. Если ЭДС направлена к узлу, то берем ее как «+»; от узла «−».

; ; .

4) В системе уравнений все члены, содержащие узловые проводимости берутся со знаком «+», а содержащие взаимные проводимости − со знаком «-».

Решив систему уравнений, найдем потенциалы всех узлов. По этим потенциалам определяем токи ветви ,

если ток получился со знаком «-», значит в действительности он направлен в противоположную сторону.

; ; ; ; .

Цель : Экспериментальное исследование сложных электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. электрический сложный цепь кирхгоф

Электрической цепью называют совокупность источников и приемников электрической энергии, соединенных между собой проводами, предназначенную для передачи и преобразования электрической энергии. Источники электрической энергии характеризуются величиной ЭДС E , измеряемой в вольтах (В), и внутренним сопротивлением r , измеряемым в омах (Ом).

Приемниками электрической энергии в электрических цепях могут быть катушка индуктивности, конденсатор, аккумуляторная батарея в режиме зарядки, электрическая машина в режиме двигателя, лампа накаливания, электрическая печь и другие электрические компоненты. В них происходит необратимое (электрические печи) или обратимое (конденсатор, катушка индуктивности и аккумуляторная батарея) преобразование электрической энергии в другие ее виды. В цепях постоянного тока мы будем далее рассматривать только так называемые диссипативные элементы, которые не могут накапливать электрическую или магнитную энергию. Полученная ими электрическая энергия необратимо преобразуется в другие виды энергии, например в тепло. Все эти приемники - лампы накаливания, электрические печи и другие пассивные приемники мы будем представлять в виде резисторов, которые характеризуются основным параметром - электрическим сопротивлением R , равным отношению постоянного напряжения U между выводами резистора к постоянному току I , протекающему в нем, т. е.: R=U/I . Величина электрического сопротивления R , измеряется в омах (Ом).

Для расчета простых электрических цепей используют закон Ома для участка цепи, не содержащего ЭДС. Например, если между двумя точками а и b в электрической цепи включены только пассивные элементы - резисторы, то закон Ома для этого участка цепи запишется:

Если же участок цепи a-b содержит источник ЭДС E ab , то ток, протекающий по этому участку, будет определяться формулой:

Здесь - ток, протекающий по участку ab ,

Напряжение на участке ab , т.е. напряжение между точками a и b ;

Суммарное сопротивление всех пассивных элементов, включенных на участке ab цепи между точками a и b ;

ЭДС, действующая на участке ab . Эта ЭДС входит в выражение со знаком плюс, если ее направление совпадает с направлением тока, и со знаком минус, если ее направление противоположно направлению тока.

При последовательном соединении резисторов R 1 и R 2 их сопротивления складываются, т.е. эквивалентное сопротивление в этом случае будет равно:

При параллельном соединении тех же двух резисторов их эквивалентное сопротивление находится по формуле:

Сложной электрической цепью называют такую цепь, которая не может быть сведена только к последовательному или параллельному соединению источников и приемников электрической энергии (рис. 1.1).

Линейной электрической цепью называют электрическую цепь, содержащую приемники и источники электрической энергии, параметры которых (сопротивления и проводимости) остаются постоянными и не зависят от величины и направления протекающего через них тока. Зависимость тока от приложенного напряжения в таких приемниках (резисторах) изображается прямой линией, а сами резисторы называются линейными резисторами.


Сложные электрические цепи имеют несколько узлов и ветвей, а также могут иметь и несколько источников питания. Ветвью электрической цепи называют участок схемы, состоящий из нескольких последовательно соединенных элементов, по которым протекает один и тот же ток. Узлом электрической цепи называют точку соединения, к которой подходит не менее трех ветвей.

Расчет сложной линейной электрической цепи заключается в определении токов во всех ветвях и сводится к решению системы линейных алгебраических уравнений, составленных по законам Кирхгофа для данной электрической цепи.

Решение системы алгебраических уравнений представляет собой достаточно трудоемкую работу, объем которой возрастает с увеличением числа неизвестных при увеличении сложности электрической цепи.

В целях сокращения числа уравнений, решение которых даст искомые величины и определит режим электрической цепи, разработаны различные методы расчета линейных электрических цепей: например, метод контурных токов, где уравнения составляются только по второму закону Кирхгофа, или метод узловых потенциалов, когда уравнения составляются только по первому закону Кирхгофа.

В данной лабораторной работе экспериментально исследуется метод расчета электрических цепей с помощью составления и решения уравнений по первому и второму законам Кирхгофа.

Первый закон Кирхгофа формулируется следующим образом: сумма притекающих к узлу токов равна сумме вытекающих из узла токов или алгебраическая сумма токов в узле равна нулю, т. е.

Например, для узла b (см. рис. 1.1):

Второй закон Кирхгофа гласит: в любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжения на всех сопротивлениях этого контура равна алгебраической сумме ЭДС, действующих в этом контуре, т. е.

Например, для контура abda :

R 1 ·I 1 +R 3 ·I 3 =E 1. (1.6)

Для контура cbdc :

R 2 ·I 2 +R 3 ·I 3 = E 2. (1.7)

Запишем уравнения (1.6) - (1.7) в канонической форме. Для этого расположим неизвестные в уравнениях в порядке их нумерации и заменим отсутствующие члены членами с нулевыми коэффициентами:

I 1 +I 2 -I 3 = 0

R 1 ·I 1 + 0·I 2 +R 3 ·I 3 = E 1

I 1 +R 2 ·I 2 +R 3 ·I 3 = E 2 ,

или в матричной форме:

После подстановки численных значений ЭДС и сопротивлений полученная система уравнений решается известными из математик и методами, например методом Крамера или методом Гаусса. Можно решить эту систему и в интегрированном пакете MATHCAD.

В любой электрической цепи выполняется закон сохранения энергии, т. е. мощность, развиваемая источниками электрической энергии равна сумме мощностей, потребляемых приемниками электрической энергии. Этот баланс мощностей записывается следующим образом:

Выполнение работы (вариант 1)

1) «Собрала» на экране монитора электрическую схему (рис. 1.1), параметры элементов которой должны быть установлены на компьютере в соответствии с вариантом (табл. 1.1).

Таблица 1.1

3. Составила систему уравнений по законам Кирхгофа для исследуемой цепи, подставив в эти уравнения вместо сопротивлений и ЭДС их величины.

I 1 -I 2 +I 3 = 0,

R 1 ·I 1 + R 2 ·I 2 +0·I 3 = E 1 ,

  • I 1 +R 2 ·I 2 +R 3 ·I 3 = E 2.
  • 4. Решила полученную систему методом обратной матрицы в программе Excel (Рис.1. Решение системы уравнений методом обратной матрицы) и результаты расчета занесла в табл. по форме 1.1. Сравнить расчетные токи с измеренными ранее в лабораторной работе.

Рис. 1

5. Проверила баланс мощностей по равенству:

В ходе работы я провела экспериментальное исследование сложных электрических цепей постоянного тока методом компьютерного моделирования. Сравнив результаты данного своего эксперимента, я убедилась, что результаты совпали. Значит, метод расчета сложных цепей постоянного тока с помощью двух законов Кирхгофа доказан опытным путем.

Линейные электрические цепи постоянного тока

3.1. Основные определения.

3.2. Элементы электрических цепей (ЭЦ).

3.3. Схемы замещения источников электрической энергии.

3.4. Топологии ЭЦ.

3.5. Законы Ома и Кирхгофа в линейных ЭЦ.

3.6. Эквивалентные преобразования ЭЦ.

3.7. Методы анализа линейных ЭЦ.

Основные определения

Электрическая цепь – совокупность электротехнических устройств, состоящих из соответствующим образом соединённых источников и приёмников энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и/или информации.

Элементы цепи – отдельные объекты, выполняющие строго определённые функции. Основные элементы цепи – источники электрической энергии (ЭЭ) (генераторы – устройства производства ЭЭ), и приёмники (устройства, потребляющие ЭЭ). У каждого элемента цепи существует определённое количество контактов или полюсов. При этом различают:

· двухполюсные элементы (источники энергии, за исключением многофазных и управляемых; резисторы, катушки индуктивности, конденсаторы);

· многополюсные элементы (триоды, трансформаторы, усилители).

Кроме того, все элементы делятся на:

· активные – содержащие источник ЭЭ;

· пассивные – в которых ЭЭ рассеивается (резистор) либо накапливается (конденсатор или катушка индуктивности).

Основными характеристиками элементов являются следующие:

· вольт-амперные (для резисторов - R);

· вебер-амперные (для катушки - L);

· кулон-вольтные (для конденсаторов - С);

описываемые дифференциальными и (или) алгебраическими уравнениями.

Коэффициенты, связывающие переменные, их интегралы и производные в этих уравнениях, называются параметрами элементов .

Мгновенные значения напряжения или тока – это их значения в любой заданный момент времени, они являются функциями времени и обозначаются строчными буквами: u(t), i(t), e(t).

Мгновенное значение тока – равно скорости изменения заряда:

При этом за положительное направление тока принимают движение положительных зарядов (от «+» к «-»).

Мгновенное значение напряжения – есть значение электрической энергии (dW ), затраченной на перемещение единицы электрического заряда:

При этом за положительное направление напряжения принимают направление, совпадающее с током.

С другой стороны, напряжение можно определить как разность потенциалов двух точек:

При этом потенциалом данной точки называется отношение потенциальной энергии заряда к величине этого заряда: . Напряжение участка цепи, по которому протекает электрический ток, называют падением напряжения.

Мгновенное значение электрической энергии, измеряемое в Дж (тепловая), Вт.с, В.А.с. (электрическая), э.В (атомная-ядерная), определяется (с учетом (1) и (2): dW = Udq):


Тогда мгновенная электрическая мощность определится как скорость изменения мгновенной электрической энергии (Дж/с, Вт, ВА):

Поскольку мгновенные значения тока и напряжения могут быть как положительными, так и отрицательными, то и мгновенная мощность также может быть положительной, что означает увеличение или потребление ЭЭ цепью, и отрицательной, что означает убывание или отдачу ЭЭ из цепи.

Изучение свойств цепей осуществляется методами анализа , т.е. определением реакции или отклика цепи с известной структурой и параметрами на заранее (априори) заданные воздействия (измерительные сигналы – дельта-функция, функция включения, гармоническое колебание). Реализация известных ЭЦ с заданными свойствами осуществляется методами синтеза , т.е. определением структуры или топологии цепи при известных входных и выходных сигналах и/или заданной функциональной зависимости между ними. При этом задачи синтеза сложнее задач анализа, поскольку их решение не однозначно, т.е. заданные свойства цепи могут быть реализованы различными структурами с различными характеристиками.

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности.

    Сформулируйте законы Кирхгофа. Что отражают они физически?

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий - отрицательным:

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

Физический смысл второго закона Кирхгофа

Второй закон устанавливает связь между падением напряжения на замкнутом участке электрической цепи и действием источников ЭДС на этом же замкнутом участке. Он связан с понятием работы по переносу электрического заряда. Если перемещение заряда выполняется по замкнутому контуру, возвращаясь в ту же точку, то совершенная работа равна нулю. Иначе бы не выполнялся закон сохранения энергии. Это важное свойство потенциального электрического поля описывает 2 закон Кирхгофа для электрической цепи.

Физический смысл первого закона Кирхгофа

Первый закон устанавливает связь между токами для узлов электрической цепи. Он вытекает из принципа непрерывности, согласно которому суммарный поток зарядов, образующих электрический ток, проходящих через любую поверхность равен нулю. Т.е. количество прошедших зарядов в одну сторону равно количеству зарядов, прошедших в другую сторону. Т.е. количество зарядов никуда не может деться. Они не могу прост исчезнуть.

    сколько уравнений составляется по первому закону Кирхгофа и сколько по второму?

Кол-во уравнений, первый закон Кирхгофа = Кол-во узлов – 1

Кол-во уравнений, второй закон Кирхгофа = Кол-во ветвей – Кол-во узлов + 1

    Понятие независимого контура. Чему равно число независимых контуров в любой цепи?

Независимый контур - это замкнутый участок электрической цепи, проложенный через ветви цепи, содержащий хотя бы одну новую ветвь, неиспользованную при поиске других независимых контуров.

    понятия узел, ветвь, электрическая цепь.

Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. Рассмотрим для примера две электрические схемы (рис. 1, 2), введя понятие ветви и узла.

Рис.1

Рис.2

Ветвью называется участок цепи, обтекаемый одним и тем же током.

Узел – место соединения трех и более ветвей.

    Что такое потенциальная диаграмма как она строится?

Под потенциальной диаграммой понимают график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, по оси ординат - потенциалы. Каждой точке участка цепи или замкнутого контура соответствует своя точка на потенциальной диаграмме.

    Каковы особенности режимов работы аккумуляторной батареи?

    Метод наложения его достоинства и недостатки

    Сущность метода эквивалентного генератора и способы определения параметров активного двухполюсника

Этот метод применяется в тех случаях, когда требуется рассчитать ток в какой-либо одной ветви при нескольких значениях ее параметров (сопротивления и ЭДС) и неизменных параметрах всей остальной цепи. Сущность метода заключается в следующем. Вся цепь относительно зажимов интересующей нас ветви представляется как активный двухполюсник, который заменяется эквивалентным генератором, к зажимам которого подключается интересующая нас ветвь. В итоге получается простая неразветвленная цепь, ток в которой определяется по закону Ома. ЭДС Е Э эквивалентного генератора и его внутреннее сопротивление R Э находятся из режимов холостого хода и короткого замыкания двухполюсника.

    Сущность метода контурных токов и напряжения двух узлов.

Метод контурных токов можно применить для расчета сложных электриче­ских цепей, имеющих больше двух узловых точек. Сущность метода контурных токов заключается в предположении, что в ка­ждом контуре проходит свой ток (контурный ток). Тогда на общих участках, расположенных на границе двух соседних контуров, будет протекать ток, равный алгебраической сумме токов этих контуров.

    Режимы работы источников питания.

    Покажите, что условием максимальной передачи мощности от источника к приемнику электрической энергии является равенство R вн= R н

 

 

Это интересно: