→ Название частей и клетки и их функции. Основные свойства клетки

Название частей и клетки и их функции. Основные свойства клетки

Она 2-х мембранная, пористая. Наружная переходит в мембрану ЭПС,свойственно всем эукариотическим клеткам. Поры имеют определенную структуру-результат слияния наружной и внутренней ядерной мембраны.

В неделящейся клетке хроматин представляет собой мелкозернистые, нитевидные структуры. Они состоят из молекул ДНК и белковой нуклеопротеидной обкладки. Когда клетка делится, хроматиновые структуры плотно спирализуются и образуют хромосомы. Каждая состоит из 2 - х хроматид, в хроматидах происходит конденсация хроматина, в состав которого входят специальные белки - гистоны .

Хроматиды после деления ядра расходятся к полюсам и хромосомы становятся однохроматидными . К началу следующего деления каждая хромосома достраивает 2-ю хроматиду. Хромосома имеет первичную перетяжку, на ней располагается центромера. Она делит хромосому на 2 плеча:

    Метацентрические - имеют центромеру посередине

    Субметацентрические - имеют одно большое, одно малое плечо

    Акроцентрические - имеют центромеру почти на конце хромосомы.

    Спутниковая

У ядрышковых хромосом может быть вторичная перетяжка.

Шаровидное тело, не являющееся самостоятельной структурой, напоминает клубок нити, не имеет мембраны. Состоит из белка, р-РНК, образуется на вторичной перетяжке ядрышковой хромосомы, называются ядрышковыми организаторами, при делении клеток оно распадается.

Полужидкое вещество в виде коллоидного раствора белков, нуклеиновых кислот, углеводов, минеральных солей, имеющий кислую среду

Тонкая ультрамикроскопическая пленка (около 10 нм), представляющая собой жидкосно0мозаичную модель, которая состоит из бимолекулярного слоя липидов, целостность которого прерывается белковыми молекулами ил порами. Белки лежат мозаично:

А) погруженные (полуинтегральные) - частично входят в липидный слой

Б) пронизывающие (интегральные) - насквозь пронизывают 2 слоя липидов

В) поверхностные (примембранные или периферические) - располагаются на поверхности липидного слоя. Белки образуют ферментативные системы, а липиды состоят из полярных головок и не полярных водоотталкивающих хвостов. На поверхности животных клеток находится слой полисахаридов - гликокаликс. В растительной и грибной клетках мембрана окружена клеточной стенкой, состоящей в основном из целлюлозы или хитина

Ультрамикроскопическая система мембран, канальцев, цистерн и пузырьков. Она имеет универсальное строение, может начинаться от наружной клеточной мембраны до наружной ядерной мембраны. Она объединяет в единое целое мембранную цепь, на ней находятся ферментативные системы или рибосомы, в связи с этим различают 2 вида ЭПС:

А) агранулярная или гладкая - на ней находятся ферментативные системы, она преобладает в клетках семян, богатых запасными веществами

Б) гранулярная или шероховатая - несет на себе рибосомы, которые во время синтеза образую полисомы

Это микроскопическая структура. В растительных клетках видима только в микроскоп, и представляющая собой стопочку плоских цистерн(от 5 до 10), по краям отходят мелкие трубочки и пузырьки.

Различают 2 полюса:

А) строительный

Б) секреторный

Количество диктиосом доходит до 20

Микроскопические или субмикроскопические органеллы в виде мелких пузырьков диаметром 0,5 мкм. Их число зависит от жизнедеятельности клетки и ее физиологического состояния. В лизосомах находятся лизирующие и растворяющие ферменты, синтезированные на рибосомах, затем они поступают в ЭПС, а оттуда в комплексе Гольджи, где обособляются в виде пузырьков с ферментами

А) первичные - образованные в аппарате Гольджи

Б) вторичные - образованные в результате фагоцитоза

Структуры характерные для растительной клетки,

это одномембранные органеллы, имеющие ярковыраженный тонопласт . Внутри находится клеточный сок, содержащий минеральные вещества, ферменты, витамины. В молодых клетках вакуоли мелкие и их много, а в старых они сливаются в одну крупную и смещают ядро к периферии. Содержимое вакуоли - клеточный сок - представляет собой слабокислый (рН 2-5) водный раствор различных органических и неорганических веществ (в незрелых плодах или в зрелых плодах лимона клеточный сок имеет сильнокислую реакцию). По химическому составу и консистенции клеточный сок существенно отличается от протопласта . Эти различия связаны с избирательной проницаемостью тонопласта, выполняющего барьерную функцию. Большинство органических веществ, содержащихся в клеточном соке, относится к группе эргастических продуктов метаболизма протопласта. В зависимости от потребностей клетки они могут накапливаться в вакуоли в значительных количествах либо полностью исчезать. Наиболее обычны различные углеводы, играющие роль запасных энергетических веществ, а также органические кислоты. Вакуоли семян нередко содержат и белки-протеины. Растительные вакуоли часто служат местом концентрации разнообразных вторичных метаболитов - полифенольных соединений: флавоноидов , антоцианов , таннидов и азотсодержащих веществ - алкалоидов . В клеточном соке растворены также многие неорганические соединения. У животных клеток содержимое вакуолей зависти от их вида. Либо это жизненные ферменты- пищеварительные вакуоли, либо это вещества предназначенные для удаления избытка воды, солей- сократительная вакуоль

Органелла для большинства растительных и животных клеток, микроскопическая органелла двумембранного строения.

Внешняя мембрана гладкая, внутренняя образует различные формы выростов, у растений- трубкообразные, у животных- кристы . По форме митохондрии напоминают вытянутые структуры. Внутренне содержимое матрикс или полужидкое вещество содержит белки, липиды, соли Са М g , витамины, а также ДНК, РНК и рибосомы.

На поверхности крист могут находиться ферменты, участвующие в синтезе АТФ. Митохондрии могут делиться, живут около 10 дней и разрушаются

Характерны только для растительных эукариотических клеток, имеют округлую или овальную форму, образуются из пропластид и размножаются с помощью деления. Они могут переходить из одного вида в другой, являются полуавтономными органеллами, имея собственный генетический аппарат ДНК и РНК, рибосомы и белки

Двумембранные органеллы сложного строения, содержащие хлорофилл, У водорослей носителями хлорофилла являются хроматофоры . У растений имеется двояковыпуклая форма. В клетках находятся до 1000 хлоропластов, он покрыты гладкой наружной мембраной, а внутренняя образует в полости пластид тилакоиды. Дисковидные тилакоиды формируют граны , а трубковидные тилакоиды - ламеллы . Число гран может достигать 40-60. Граны напоминают стопочку монет. В стромах (матриксе) находятся белки, липиды, ферменты, АТФ, а также п- ДНК, РНК и рибосомы. В гранах находятся зерна хлорофилла, а также каротиноиды. Размножаются путем деления.

Они различной формы: нитевидной, ромбической, треугольной, игловидной, серповидной, пластинчатой, шаровидной. При переходе хлоропластов в хромопласты, каротиноиды по мере разрушения хлорофилла кристаллизуются и разрывают пластиды. Каротиноиды могут быть растворены в липидных глобулах или накаливаться в белковых фибриллах. Форма каротиноидов типичная для каждых видов растений, они имеют двумембранную структуру, и внутренняя мембрана представлена одиночными тилакоидами.

Бесцветные мелкие пластиды, округлой формы, с очень простым строением, образуются из пропластид, имеют двойную мембрану, внутренняя образует 2-3 выступа в строму , а наружная мембрана гладкая. Все пластиды способны к делению. В строме расположены ДНК, рибосомы, ферменты, осуществляющие синтез и гидролиз.

Ультрамикроскопическая органелла, представляющая собой частицу сложной формы, состоящую из 2-х неравных субъединиц - большой и малой.

Различают 2 типа рибосом:

Эукариотический - коэффициент седиментации

80 S - целая, 40 S - малая, 60 S - большая.

Прокариотический – 70 S - целая,

30 S - малая, 50 S - большая.

У рибосом находящихся в митохондриях и хлоропластах коэффициент седиментации составляет 70 S . Рибосомы образуются в ядрышках в виде субъединиц, затем переходят в цитоплазму, по форме они могут быть округлыми или грибовидными, они не имеют мембранного строения, состоят из белка и р-РНК. р-РНК содержит около 63% массы рибосом, образуя ее каркас. В процессе синтеза белка рибосомы способны объединяться на и-РНК в цепочки - полисомы. Количество полисом указывает на интенсивность биосинтеза белка, рибосомы могут находиться в гранулярной ЭПС и в цитоплазме

Ультрамикроскопическая органелла не мембранного строения. Состоит из 2х центриолей, расположенных перпендикулярно друг другу, и окруженных цитоплазмой - центросфера.

Каждая центриоль имеет цилиндрическую форму, стенки ее образованы 9ю триплетами трубочек. В середине находится однородное вещество, центросома располагается вблизи ядра, во время деления клеток она делится на 2 части.

ФОРМУЛА микротрубочек:

(9 *3)+2 = 29

Это сферические тельца диаметром 1 мкм. Присущи всем растениям, представляют собой 2х слойный фосфолипидный шар, к которому прикреплены молекулы белка, в результате возникает третий -белковый слой.

Комплекс рибосом, РНК и белка. Присущи только растительным клеткам.

Единичные выросты цитоплазмы клетки. Характерны для простейших жгутиконосцев

(эвглена зеленая, лямблии, трипаносомы)

Сверху покрыты плазмалеммой, состоят из микротрубочек (формула: 9*2+2).

Основной сократительный белок – ТУБУЛИН (сперматозоид человека, одноклеточная водоросль

- хламидомонада, вольвокс),

прокариоты – белок флагеллин.

Короткие многочисленные выросты цитоплазмы, выступающие из клетки. Они покрывают плазмалемму. В их составе тубулин

Выросты цитоплазмы в любом месте клетки, образованные перетаскиванием цитоплазмы. Характерны для лейкоцитов, амебы, арцеллы, дифлюгии – корненожки. Имеют изменчивую форму

Опорно-двигательная система клетки. Органеллы располагаются в цитоплазме от ядерной мембраны до плазмалеммы. Основными являются микротрубочки и микрофиломенты

Полые цилиндры, стенки которых образованы белком тубулином

Очень тонкие и длинные цилиндры или трубочки, в состав которых входят активные белки: АКТИН и МИОЗИН. В присутствии АТФ они объединяются в длинные цепи. Микрофиломенты находятся под плазмалеммой эукариот

Пероксисома (лат. peroxysoma ) - обязательная органелла эукариотической клетки , ограниченная мембраной, содержащая большое количество ферментов , катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот , уратоксидазы и каталазы ). Имеет размер от 0,2 до 1,5 мкм , отделена от цитоплазмы одной мембраной. Этот тип окислительных реакций особенно важен в клетках печени и почек , пероксисомы которых обезвреживают множество ядовитых веществ, попадающих в кровоток. Почти половина поступающего в организм человека этанола окисляется до ацетальдегида этим способом. Кроме того, реакция имеет значения для детоксикации клетки от самой перекиси водорода.Новые пероксисомы образуются чаще всего в результате деления предшествующих, как митохондрии и хлоропласты . Они, однако, могут формироваться и de novo из эндоплазматического ретикулума , не содержат ДНК и рибосом , поэтому высказанные ранее предположения об их эндосимбиотическом происхожденим необоснованны.

Все ферменты, находящиеся в пероксисоме, должны быть синтезированы на рибосомах вне её. Для их переноса из цитозоля внутрь органеллы мембраны пероксисом имеют систему избирательного транспорта. Так как пероксид водорода – токсичное вещество, оно подвергается расщеплению под действием пероксидазы. Реакции образования и расщепления пероксида водорода включены во многие метаболические циклы, особенно активно протекающие в печени и почках. Поэтому в клетках этих органов количество пероксисом достигает 70-100.

Органоиды (органеллы) - вцитологиипостоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки сорганами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в еёцитоплазме. Частоядрои внутриядерные структуры (например,ядрышко) не называют органоидами.Клеточную мембрану,ресничкии жгутикитоже обычно не причисляют к органоидам.

Рецепторыи прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят.

Во многом набор органоидов, перечисляемый в учебных руководствах, определяется традицией.

Клеточные органоиды (имеющие мембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядро

Система генетической детерминации и регуляции белкового обмена

Эндоплазмати-ческая сеть гранулярная (ЭПС)

Синтез гормонов, ферментов, белков плазмы, мембран; сегрегация (обособление) синтезированных белков; образование мембран вакуолярной системы, плазмолеммы, синтез фосфолипидов

Эндоплазмати-ческая сеть гладкая (ЭПС)

Метаболизм липидов и некоторых внутриклеточных полисахаридов

Пластинчатый комплекс Гольджи

синтез полисахаридов

Секреция, сегрегация и накопление продуктов, синтезированных в ЭПС,

синтез полисахаридов

Лизосомы первичные

Гидролиз биополимеров

Гидролиз биополимеров

Лизосомы вторичные (см. вакуоль)

Результат фагоцитоза, пиноцитоза, трнсмембранный транспорт веществ

Аутолизосома

Аутолиз клеточных компонентов

Пероксисомы

Окисление аминокислот, образование перекисей

Окисление аминокислот, образование перекисей, защитная функция

Митохондрии

Синтез АТФ

Синтез АТФ

Кинетопласт

Комплексная функция: движение и энергообеспечение движения

Пластиды:

хлоропласты

хроматофоры лейкопласты хромопласты

Фотосинтез, синтез и гидролиз вторичного крахмала (амилопласты); масла (элайопласты); белка (протеинопласты, протеопласты)

Вакуоль

Внутриклеточное пищеварение

Накопления воды и питательных веществ

Клеточные органоиды (имеющие немембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядрышко

Место образования рибосомных РНК

Центриоли (центросомы)

Формирование веретена деления

Рибосомы

Синтез белка

Синтез белка

Микротрубочки

Цитоскелет, участие в транспорте веществ и органоидов

Микро-филаменты

Сократимые элементы цитоскелета, подвижность клетки, внутриклеточное движение веществ

Микрофибриллы

Сократительная функция клетки и внутриклеточного перемещения органоидов

Жгутики

Органы движения

Органы движения

Реснички

Увеличение всасывающей поверхности

Органы движения, защиты

Диктиосомы, десмосомы

Высоко контактные мембраны

Орган межклеточного контакта

Органоиды эукариот

(общая информация)

Органелла

Основная функция

Структура

Организмы

Примечания

Хлоропласт

(Пластиды)

фотосинтез

двух-мембранная

растения,

протисты

имеют собственную ДНК; предполагают что хлоропласты возникли из цианобактерийв результате симбиогенеза

Эндоплазма-тический ретикулум

трансляция и свёртывание новых белков (гранулярный эндоплазматический ретикулум), синтезлипидов

(агранулярный эндоплазматический ретикулум)

одно-мембранная

все эукариоты

на поверхности гранулярного эндоплазма-тического ретикулума находится большое количество рибосом, свёрнут как мешок; агранулярный эндоплазма-тический ретикулум свёрнут в трубочки

Аппарат Гольджи

сортировка и преобразование белков

одно-мембранная

все

эукариоты

асимметричен - цистерны, располагающиеся ближе к ядру клетки, содержат наименее зрелые белки, а от цистерн, располагающихся дальше от ядра, отпочковываются пузырьки, содержащие полностью зрелые белки

Митохондрия

энергетическая

двух-мембранная

большинство эукариот

имеют свою собственную митохонд-риальную ДНК; предполагают, что митохондрии возникли в результате симбиогенеза

Вакуоль

запас, поддержаниегомеостаза, в клетках растений - поддержание формы клетки (тургор)

одномембранная

эукариоты, более выражена у растений

Ядро

Хранение ДНК,транскрипцияРНК

двухмембранная

всеэукариоты

содержит основную частьгенома

Рибосомы

синтезбелкана основе матричных РНКпри помощи транспортныхРНК

РНК/белок

эукариоты,

прокариоты

Везикулы

запасают или транспортируют питательные вещества

одномембранная

всеэукариоты

Лизосомы

мелкие лабильные образования, содержащие ферменты, в частности гидролазы, принимающие участие в процессах переваривания фагоцитированнойпищи и автолиза (саморастворение органелл)

одномембранная

большинство эукариот

Центриоли (клеточный центр)

Центр организациицитоскелета. Необходим для процесса клеточного деления (равномерно распределяет хромосомы)

немембранная

эукариоты

Меланосома

хранение пигмента

одномембранная

животные

Миофибриллы

сокращение мышечных волокон

сложно организованный пучок белковых нитей

животные

Предполагают, чтомитохондрии ипластиды - это бывшиесимбионтысодержащих их клеток, некогда самостоятельныепрокариоты

Строение клетки. Основные части и органоиды клетки, их строение и функции.

Клетка – элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.
Органоиды клетки – постоянные клеточные структуры, клеточные органы, обеспечивающие выполнение специфических функций в процессе жизнедеятельности клетки - хранение и передачу генетической информации, перенос веществ, синтез и превращения веществ и энергии, деление, движение и др.
Хромосомы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи.

2. Назовите основные компоненты клеток.
Цитоплазма, ядро, плазматическая мембрана, митохондрии, рибосомы, комплекс Гольджи, эндоплазматическая сеть, лизосомы, микротрубочки и микрофиламенты.

3. Приведите примеры безъядерных клеток. Объясните причину их безъядерности. Чем отличается жизнь безъядерных клеток от клеток, имеющих ядро?
Прокариоты – клетки микроорганизмов, вместо ядра содержащие в клетке хроматин, который заключает в себе наследственную информацию.
У эукариот: эритроциты млекопитающих. На месте ядра в них находится гемоглобин и, следовательно, увеличивается связывание О2 и СО2, кислородная емкость крови - газообмен в легких и тканях протекает эффективнее.

4. Закончите схему «Типы органоидов по строению».

5. Заполните таблицу «Строение и функции органоидов клетки».

7. Что представляют собой клеточные включения? Каково их назначение?
Это скопления веществ, которые клетка или использует для своих нужд, или выделяет во внешнюю среду. Это могут быть гранулы белка, капли жира, зерна крахмала или гликогена, расположенные непосредственно в цитоплазме.

Эукариотические и прокариотические клетки. Строение и функции хромосом.
1. Дайте определение понятий.
Эукариоты – организмы, клетки которых содержат одно ли несколько ядер.
Прокариоты – организмы, клетки которых не имеют оформленного ядра.
Аэробы – организмы, использующие в энергетическом обмене кислород воздуха.
Анаэробы – организмы, не использующие в энергетическом обмене кислород.

3. Заполните таблицу «Сравнение клеток прокариот и эукариот».


4. Нарисуйте схематично строение хромосом прокариотической и эукариотической клеток. Подпишите их основные структуры.
Что имеют общего и чем отличаются хромосомы эукариотических и прокариотческих клеток?
У прокариот ДНК кольцевая, не имеет оболочки и располагается прямо в центре клетки. Иногда у бактерий нет ДНК, а вместо нее РНК.
У эукариот ДНК линейная, находится в хромосомах в ядре, покрытом дополнительной оболочкой.
Общее для этих клеток то, что генетический материал представлен ДНК, находящейся в центре клетки. Функция одинакова – хранение и передача наследственной информации.

6. Почему ученые считают, что прокариоты являются наиболее древними организмами на нашей планете?
Прокариоты – наиболее простые и примитивные организмы по строению и жизнедеятельности, тем не менее – легко приспосабливаются практически к любым условиям. Это позволило им заселить планеты и дать начало другим, более развитым организмам.

2. Представители каких царств живой природы состоят из эукариотических клеток?
Грибы, растения и животные являются эукариотами.


Подобно тому, как организм животного или растения состоит из отдельных органов и их систем, клетка состоит из органоидов. Рассматривая органоиды клетки и их функции, важно отметить внешнее строение клетки. Снаружи «единица жизни» покрыта мембраной, которая служит разграничительным барьером, отделяя внешнюю среду от внутреннего содержимого клетки. При этом мембрана выполняет защитную и разграничительную функции, а также принимает раздражители внешней среды (рецепторная функция) и осуществляет транспорт веществ.

Органоиды клетки - постоянные клеточные структуры, клеточные органы, обеспечивающие выполнение специфических функций в процессе жизнедеятельности клетки - хранение и передачу генетической информации, перенос веществ, синтез и превращения веществ и энергии, деление, движение и др.

К органоидам клеток эукариот относятся:
хромосомы,
клеточная мембрана,
митохондрии,
комплекс Гольджи,
эндоплазматическая сеть,
рибосомы,
микротрубочки,
микрофиламенты,
лизосомы;

В животных клетках присутствуют также центриоли, микрофибриллы, а в растительных - свойственные только им пластиды.
Иногда к органоидам клеток эукариот относят и ядро в целом.
Прокариоты лишены большинства органоидов, у них имеются лишь клеточная мембрана и рибосомы, отличающиеся от цитоплазматических рибосом клеток эукариот.
В специализированных эукариотных клетках могут быть сложные структуры, в основе которых находятся универсальные органоиды, например микротрубочки и центриоли - главные компоненты жгутиков и ресничек. Микрофибриллы лежат в основе тоно- и нейрофибрилл. Специальные структуры одноклеточных, например жгутики и реснички (построены так же, как у клеток многоклеточных), выполняют функцию органов движения.
Чаще в современной литературе термины «органоиды» и «органеллы» употребляют как синонимы.

Существование клетки и ее компонентов было бы невозможным, если бы внутри она не была заполнена специальной жидкостью – цитоплазмой. Именно цитоплазма производит транспорт веществ внутри клетки подобно крови и лимфе в нашем организме. При этом цитоплазма создает эффект межклеточного взаимодействия за счет различного рода отростков, ресничек, ворсинок. Часть подобных отростков (например, жгутики или реснички) могут выполнять двигательную функцию, иные выросты клетки к движению не способны.

Митохондрия – один из важнейших органоидов клетки, участвующий в процессах дыхания «единицы жизни» и преобразующий различные формы энергии в тот вид, который доступен для клетки. По сути, митохондрии – это энергетическая база клетки, а потому количество данных органоидов зависит от тех функций, которые выполняет клетка, и, соответственно, от ее потребностей в энергетических ресурсах. Примечательно, что митохондрии содержат собственную цепочку ДНК, в которой сосредоточено до 2% ДНК самой клетки.

Иной органоид, участвующий в процессе метаболизма, - рибосома. Именно данный элемент клетки производит синтез белка. Важно отметить, что белки присутствуют во всех клетках человеческого организма, за исключением эритроцитов. Рибосомы свободно располагаются в цитоплазме, а сам процесс синтеза белка связан с явлением транскрипции – копированием той информации, которая записана в ДНК.

Органоиды клетки и их функции не имели бы никакого смысла в природе, если бы в клетке отсутствовало ядро. Этот органоид примечателен тем, что в нем содержится очень важное вещество – хроматин, которое является основой для формирования хромосом. Именно хромосомы передают наследственную информацию о клетке при размножении. Поэтому хроматин образован ДНК и небольшим количеством РНК. Кроме этого, в состав ядра входит ядрышко – тело, в котором происходит синтез новых рибосом. Размеры ядрышка варьируются в зависимости от того, насколько интенсивно проходит синтез белка в клетке.
В заключение отметим, что, рассматривая органоиды клетки и их функции, очень сложно выявить какой-то один «орган единицы жизни», который можно было бы назначить главным. Условно таким органоидом выбирают ядро, как у человека главным органом считают сердце. В реальности все органоиды поддерживают множество химических, физических и биологических процессов, благодаря чему и происходит выполнение клеткой комплекса различных функций, которые объединяют под общим понятием жизни.

Строение и функции клеточных органоидов

Клеточные органоиды Строение Функции
I. Мембранные органоиды
Эндоплазматическая сеть (ЭПС), или ретикулум. Сложная система каналов и полостей различной формы (трубочки, цистерны), пронизывающая всю цитоплазму и контактирующая с наружной клеточной мембраной, ядерной мембраной и другими мембранными структурами клетки. Имеет одномембранное строение. Соединяет все клеточные мембранные структуры в единую систему. Является поверхностью, на которой происходят все внутриклеточные процессы. Пространственно разделяет клетку. По системе каналов осуществляется транспорт веществ.
а) Шероховатая или гранулярная эндоплазматическая сеть. Мембраны покрыты мелкими гранулами – рибосомами. Синтез полипептидов, их частичная модификация и транспорт.
б) Гладкая, или агранулярная, эндоплазматическая сеть. Мембраны лишены рибосом, но здесь скапливаются ферменты липидного, углеводного обмена. Синтез липидов, стероидов, углеводов, их транспорт.
Комплекс Гольджи (или пластинчатый комплекс, или аппарат Гольджи). Есть почти во всех клетках (исключение – эритроциты, сперматозоиды). Располагается обычно около ядра; клетка может иметь один или несколько комплексов Гольджи. Система уложенных в стопку уплощенных мембранных мешочков – цистерн, трубочек и связанных с ними пузырьков. Транспорт веществ, главным образом белков и липидов, поступающих из эндоплазматической сети, предварительная их химическая перестройка, накопление, упаковка в пузырьки, формирование лизосом.
Лизосомы. Встречаются во всех клетках, рассеяны по цитоплазме. Одномембранные пузырьки разнообразной формы и размеров; содержат различные протеолитические ферменты (около 40). Участвуют во внутриклеточном пищеварении, т.е. расщеплении крупных молекул. Могут разрушать и структуры самой клетки, вызывая ее гибель – аутолиз.
Митохондрии. Встречаются почти во всех клетках (кроме зрелых эритроцитов млекопитающих). В разных типах клеток может быть от 50 до 500 митохондрий. Двумембранные органеллы различной формы (овальные, палочковидные). Наружная мембрана гладкая, внутренняя образует многочисленные складки – кристы. На кристах находятся ферменты, участвующие в синтезе АТФ.
Внутреннее содержание митохондрий – матрикс – содержит одну кольцевую молекулу ДНК, РНК, рибосомы, белки, фосфолипиды.
Синтез молекул АТФ – универсального источника энергии для всех биохимических процессов клетки. Синтез стероидных гормонов.
Пластиды – органеллы, характерные только для растительных клеток и встречающиеся во всех живых клетках зеленых растений. Все типы пластид образуются из своих предшественников – пропластид.
Отсутствуют только у спермиев некоторых высших растений (например, кукуруза).
Двумембранные органеллы, обычно овальной формы, в которых помимо фотосинтеза протекают многие промежуточные стадии обмена веществ (синтез пуринов и пиримидов, большинства аминокислот, всех жирных кислот и т.д.) Различают три вида пластид (хлоропласты, хромопласты, лейкопласты), для каждого из которых характерна своя функция.
Хлоропласты. Наружная мембрана – гладкая, внутренняя образует впячивания или мешочки – тиллакоиды. Тиллакоиды собраны в стопки (напоминают стопки монет) – по 50 штук. Такие стопки называются граны. В мембранах тиллакоидов находится хлорофилл. Внутреннее содержимое – строма – содержит 1 кольцевую молекулу ДНК, РНК, белки. В хлоропластах осуществляется фотосинтез. Кроме того, пигмент хлорофилл окрашивает листья, молодые стебли, незрелые плоды в зеленый цвет.
Хромопласты – нефотосинтезирующие пластиды, встречаются в цитоплазме клеток цветков, стеблей, плодов, листьев, придавая им соответствующую окраску. Хромопласты имеют более простое строение (почти отсутствуют тиллакоиды). Содержат разные пигменты – каротиноиды – красные, желтые, оранжевые, коричневые. Запас питательных веществ.
Лейкопласты – бесцветные пластиды, располагаются в неокрашенных частях растений (корни, клубни, корневища и т.д.). Лейкопласты также более просто организованы, лишены пигментов, либо пигменты в них находятся в неактивной форме. В лейкопластах одних клеток запасаются зерна крахмала – это аминопласты (клубни картофеля). В лейкопластах других – жиры – липидопласты (орехи, подсолнечник), или белки – протеинопласты (в некоторых семенах).
II. Органоиды, не имеющие мембранного строения
Рибосомы встречаются во всех типах клеток (включая и прокариотические). Могут свободно лежать в цитоплазме или соединяться с мембранами ЭПС. Есть в митохондриях, пластидах. Небольшие сферические тельца, образованные двумя неравными субъединицами – большой и малой, которые состоят из 3-4 молекул рибосомальной РНК и более 50 молекул белков. В рибосомах всегда есть и ионы магния, поддерживающие их структуру. Синтез полипептидных цепочек (второй этап синтеза белка – трансляция).
Клеточный центр, или центросома. Встречается почти во всех клетках животных (кроме некоторых видов простейших) и некоторых растений. Отсутствует у цветковых и низших грибов. Состоит из двух центриолей, расположенных перпендикулярно друг другу. Центриоль – небольшая цилиндрическая органелла, стенку которой образует 9 групп (триплетов) из трех слившихся микротрубочек.
Содержат моль ДНК, способны к самоудвоению.
Клеточный центр принимает участие в образовании веретена деления (ахроматинового веретена). Центриоли образуют базальные тельца ресничек, жгутиков.
Микротрубочки и микрофиламенты. Сложная система нитей, пронизывающая всю цитоплазму. Нити формируются из молекул различных сократительных белков (миозин, тубулин и др.). Вместе с некоторыми другими элементами формируют цитоскелет клетки. Обеспечивают внутриклеточное движение органелл, а также движение клеток, сокращение мышечных волокон, формируют нити митотического веретена.

Помимо органелл общего назначения некоторые эукариотические клетки содержат еще специализированные органеллы, характерные только для определенных типов клеток.
К таким органоидам специального назначения относятся реснички и жгутики, выполняющие функцию движения (например, у простейших – инфузорий, эвглены или у мужских половых клеток), а также микроворсинки, сократительные вакуоли и некоторые другие органоиды.

Рецепторы или фоторецепторы и прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами очень нечеткая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Все чаще к органоидам причисляют и другие подобные комплексы сравнимых размеров и уровня сложности - протеасомы, сплайсосомы и др. В то же время сравнимые по размерам элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят. Степень постоянства клеточной структуры - тоже ненадежный критерий ее отнесения к органоидам. Так, веретено деления, которое хотя и не постоянно, но закономерно присутствует во всех эукариотических клетках, обычно к органоидам не относят, а везикулы, которые постоянно появляются и исчезают в процессе обмена веществ - относят. Во многом набор органоидов, перечисляемый в учебных руководствах, определяется традицией.



Органоиды - постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По принципу организации выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (ЭПС) - система внутренних мембран цитоплазмы, образующих крупные полости - цистерны и многочисленные канальцы; занимает центральное положение в клетке, вокруг ядра. ЭПС составляет до 50% объема цитоплазмы. Каналы ЭПС связывают все органоиды цитоплазмы и открываются в перинуклеарное пространство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточную циркуляционную систему. Различают два вида мембран эндоплазматической сети - гладкую и шероховатую (гранулярную). Однако необходимо понимать, что они являются частью одной непрерывной эндоплазматической сети. На гранулярных мембранах расположены рибосомы, здесь идет синтез белка. На гладких мембранах упорядоченно расположены ферментные системы, участвующие в синтезе жиров и углеводов.

2. Аппарат Гольджи представляет собой систему цистерн, канальцев и пузырьков, образованных гладкими мембранами. Эта структура расположена на периферии клетки по отношению к ЭПС. На мембранах аппарата Гольджи упорядоченно расположены ферментные системы, участвующие в образовании более сложных органических соединений из белков, жиров и углеводов, синтезированных в ЭПС. Здесь происходит сборка мембран, образование лизосом. Мембраны аппарата Гольджи обеспечивают накопление, концентрацию и упаковку секрета, выделяемого из клетки.

3. Лизосомы - мембранные органоиды, содержащие до 40 протеолитических ферментов, способных расщеплять органические молекулы. Лизосомы участвуют в процессах внутриклеточного пищеварения и апоптоза (запрограммированной гибели клетки).

4. Митохондрии - энергетические станции клетки. Двухмембранные органоиды, имеющие гладкую наружную и внутреннюю мембрану, образующую кристы - гребни. На внутренней поверхности внутренней мембраны упорядоченно расположены ферментные системы, участвующие в синтезе АТФ. В митохондриях находится кольцевая молекула ДНК, сходная по строению с хромосомой прокариот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заключенных в кольцевидной молекуле ДНК, недостаточно для обеспечения всех аспектов жизнедеятельности митохондрий, и они являются полуавтономными структурами цитоплазмы. Увеличение их числа происходит за счет деления, чему предшествует удвоение кольцевой молекулы ДНК.

5. Пластиды, - органоиды, характерные для растительных клеток. Существуют лейкопласты - бесцветные пластиды, хромопласты, имеющие красно-оранжевую окраску, и хлоропласты. - зеленые пластиды. Все они обладают единым планом строения и образованы двумя мембранами: наружной (гладкой) и внутренней, образующей перегородки - тилакоиды стромы. На тилакоидах стромы расположены граны, состоящие из уплощенных мембранных пузырьков - тилакоидов граны, уложенных один на другой по типу монетных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фотосинтеза проходит именно здесь - в гранах, а реакции темновой фазы - в строме. В пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот, и много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Пластиды могут переходить из одного вида в другой (хлоропласты в хромопласты и лейкопласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевой молекулы ДНК.

Немембранные органоиды клетки

1. Рибосомы - округлые образования из двух субъединиц, состоящие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в ядрышке, а в цитоплазме в присутствии ионов Са 2+ объединяются в целостные структуры. В цитоплазме рибосомы расположены на мембранах эндоплазматической сети (гранулярная ЭПС) или свободно. В активном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодонам иРНК). Рибосомы, перемещаясь по молекуле иРНК с одного конца на другой, последовательно делают доступными кодоны иРНК для контакта с антикодонами тРНК.

2. Центриоли (клеточный центр) представляют собой цилиндрические тельца, стенкой которых являются 9 триад белковых микротрубочек. В клеточном центре центриоли расположены под прямым углом друг к другу. Они способны к самовоспроизведению по принципу самосборки. Самосборка - образование при помощи ферментов структур, подобных существующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хромосом во время деления клеток.

3. Жгутики и реснички - органоиды движения; они имеют единый план строения - наружная часть жгутика обращена в окружающую среду и покрыта участком цитоплазматической мембраны. Они представляют собой цилиндр: его стенкой являются 9 пар белковых микротрубочек, а в центре расположены две осевые микротрубочки. В основании жгутика, расположенного в эктоплазме - цитоплазме, лежащей непосредственно под клеточной мембраной, к каждой паре микротрубочек добавляется еще одна короткая микротрубочка. В результате образуется базальное тельце, состоящее из девяти триад микротрубочек.

4. Цитоскелет представлен системой белковых волокон и микротрубочек. Обеспечивает поддержание и изменение формы тела клетки, образование псевдоподий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обеспечивает передвижение клеточных структур по цитоплазме.

 

 

Это интересно: