→ Из какого минерала добывают железо. Железная руда: типы, способы добычи, сфера применения

Из какого минерала добывают железо. Железная руда: типы, способы добычи, сфера применения


Железными рудами называются горные породы, содержащие железо, извлечение железа из которых является экономически целесообразным. Минералов, содержащих железо, очень много, но в большинстве случаев или содержание железа в них невелико, или самый минерал встречается в природе в небольших количествах.
Имеющие наибольшее значение минералы, содержащие железо, могут быть разделены на следующие четыре группы в зависимости от их химического состава: 1) окислы железа; 2) углекислое железо; 3) кремнистое железо и 4) сернистые соединения железа. Названия и перечень этих минералов представлены в табл. 7.

Магнетит. Химическая формула магнетита (магнитного железняка) Fe3O4. В нем содержится 72,4% Fe и 27,6% O2. Цвет его темный, от серого до черного; минерал обладает магнитными свойствами. Сингония кубическая, вид симметрии гексооктаэдрический, твердость 5,5-6; уд. вес 4,9-5,2. Доля этого минерала в общей добыче железных руд невелика. Однако в некоторых металлургических районах, например на Урале или в Швеции, магнетитовые руды являются преобладающими.
В природных условиях магнетит, сохраняя свое кристаллическое строение, в той или иной степени окисляется. Содержание кислорода в магнитном железняке в этом случае уже не отвечает полностью формуле Fe3O4 или FeO*Fe2O3.
Обычно в рудах, образованных магнитным железняком, кроме магнетита, встречаются продукты его выветривания - полумартит и мартит. По классификации, принятой акад. М.А. Павловым. к магнитным железнякам относят такие руды, у которых отношение Feобщ/FeO менее 3,5 (вместо 2.333 в неокисленном магнитном железняке). К полумартитам относят руды с отношением Feобщ/FeO более 3,5 и менее 7 и, наконец, к мартитам - руды с отношением Feобщ/FeO более 7. И.А. Соколов, принимая те же цифры, берег вместо отношения Feобщ/FeO отношение Feобщ/FeFeO. Таким образом, приведенная классификация магнетитовых руд является условной.
Гематит. В химически чистой окиси железа содержится 70% Fe и 30°/о O2. В природе известны две полиморфные модификации окиси железа - устойчивая a-Fe2O3 (тригональной оингонии) и неустойчивая y-Fe2O3 (кубической сингонии), обладающая сильномагнитными свойствами и носящая название маггемита.
Гематит представлен первой модификацией. Цвет кристаллических разностей гематита железо-черный до стально-серого. Удельный вес гематита 5,0-5,3, твердость 5,5-6. Гематит составляет основу важнейших в мире месторождений железной руды. Связанные с породами различных геологических периодов, эти руды широко распространены в разнообразных видах. Многие из этих видов названы по их отличительным особенностям; например, красный железняк, оолитовый красный железняк, железистая слюда, красная стеклянная голова и т. д.
Бурые железняки. Долгое время считалось, что окись железа образует с водой следующие химические соединения: турьит - 2Fe2O3*H2O (66,31% Fe и 5,3% гидратной воды); гетит - Fe2O3*H2O (62,92% Fe и 10,1% гидратной воды); лимонит - 2Fe2О3*3Н2О (59,88% Fe и 14,43% гидратной воды); ксаитоондерит-Fe2O3*2Н2О (57,14% Fe и 18,36% гидратной моды); лимнит - Fe2O3*3Н2О (52,3% Fe и "25,3% гидратной воды).
В последнее время в результате рентгенометрических исследований установлено, что в действительности окись железа образует с водой одно химическое соединение с отношением Fe2О3:H2O = 1:1, обладающее определенной кристаллической решеткой. Все более богатые водой разности гидроокислов железа по существу являются гидрогелями, а не соединениями определенного состава. Они, как правило, содержат адсорбированную воду в различных количествах.
В современных учебниках по минералогии формулу гетита часто изображают в виде HFeO2 (учитывая, что Fe в гетите связано с гидроксилом), а формула лимонита (все гидроокиси железа, для которых Fe2O3:H2O > 1)-HFeO2*aq (aqua по-латыни вода). Турьит, по рентгенометрическим и термическим исследованиям, оказался смесью гетита и лимонита с гидрогематитом и, следовательно, не является самостоятельным минералам.
Сингония гетита - ромбическая, ромбодипирамидальный вид симметрии.
Цвет лимонита и гетита - темнобурый до черного. Твердость гетита 4,5-5,5, лимонита 4-1; удельный вес гетита 4,0-4,4, лимонита - колеблется от 3,3 до 4,0.
По физическому состоянию и внешнему виду различают много разновидностей бурых железняков: бурая стеклянная голова, обыкновенный бурый железняк, болотные и озерные руды и другие.
Карбонаты. Важнейшим представителем этой группы является минерал, называемый сидеритом, железным шпатом или шпатовым железняком; состав его определяется формулой FeCO3 (48,3% Fe и 37,9% CO2). Из изоморфных примесей чаще всего присутствуют углекислые марганец и магний. Сингония сидерита - тригональная. Цвет сидерита в свежем состоянии - желтовато-белый, сероватый, иногда с зеленым или буроватым оттенком. Твердость сидерита 3,5-4,5; удельный вес 3,9.
При выветривании сидерит окисляется с образованием лимонита, гетита.
Силикаты железа. Силикаты железа входят как примеси в состав некоторых железных руд. К силикатам железа относят много минералов, например группу хлоритов, одним из представителей которых является шамозит (примерная формула 4FeO*Al2O3*3SiO2*4H2O). Содержание FeO в этом силикате колеблется от 34,3 до 42,5%.
Из минералов других групп, содержащих силикаты железа, следует назвать нонтронит, состав которого определяется формулой: m {Mg3 [ОН]2} p {(Fe, Аl)2 2} nH2O, альмандин - Fe3Al23; а андрадит Ca3Fe23.
Сернистые соединения железа. Одним из минералов, представляющих эту группу, шляется пирит (серный колчедан, железный колчедан) FeS2, содержащий 46,7% Fe и 53,4% S. Вследствие высокого содержания серы минералы, содержащие сернистые соединения железа, в качестве железных руд не применяются. Пиритные или колчеданные руды добывают в значительных количествах для производства серной кислоты, при этом руды обжигают на воздухе. Во время обжига большая часть серы удаляется, твердый остаток в основном представляет собой окись железа и носит название пиритных огарков. Эти огарки после агломерации могут идти в доменную плавку.
Марказит представляет собой полиморфную разность FeS2 и имеет ромбическую сингонию (пирит имеет кубическую сингонию).

/ минерал Железо

Железо относится к группе самородных элементов. Самородное железо является минералом, имеющим земное и космогенное происхождение. Содержание никеля на 3 процента выше в земном железе, по сравнению с космогенным. Также содержатся примеси магния, кобальта и других микроэлементов. Самородное железо имеет светло-серый цвет с металлическим блеском, включения кристаллов редки. Это достаточно редкий минерал, обладающий твердость в 4-5 ед. и плотностью в 7000-7800 кг на метр кубический. Археологи доказали, что самородное железо использовалось древними людьми задолго до того, как появились навыки по выплавке металла железа из руды.

Данный металл в своем первоначальном виде имеет серебристо-белый оттенок, поверхность стремительно покрывается ржавчиной при высокой влажности или в воде, богатой кислородом. Данная порода отличается хорошей пластичностью, плавится при температуре в 1530 градусов по Цельсию, из него без труда можно ковать изделия и производить прокатку. Металл обладает хорошей электро- и теплопроводностью, дополнительно его отличают от других пород магнитные свойства.

При взаимодействии с кислородом поверхность металла покрывается образующейся пленкой, которая защищает его от коррозийного воздействия. А при содержании в воздухе влаги железо окисляется, и на его поверхности образуется ржавчина. В некоторых кислотах железо растворяется, и происходит выделение водорода.

История появления железа

Железо оказало огромное влияние на развитие человеческого общества и продолжает цениться сегодня. Его используют на многих производствах. Железо помогло первобытному человеку освоить новые способы охоты, привело к развитию сельского хозяйства благодаря новым орудиям. Железо в чистом виде в те времена было частью упавших метеоритов. По сегодняшний день ходят легенды о неземном происхождении данного материала. Металлургия берет свое начало в середине второго тысячелетия до н.э. В то время в Египте освоили получение металла из железной руды.

Где добывают железо?

В чистом виде железо содержится в небесных телах. Металл был обнаружен в лунном грунте. Сейчас железо добывают из руды горных пород, и Россия занимает лидирующее место по добыче этого металла. Богатые залежи железной руды расположены в европейской части, в Западной Сибири и на Урале.

Области применения

Железо необходимо при производстве стали, которая имеет широкий диапазон применения. Практически в каждом производстве используется данный материал. Широко применяется железо в быту, его можно встретить в виде кованных изделий и чугуна. Железо позволяет придавать изделию различную форму, поэтому его используют при ковке и создании беседок, ограждений и других изделий.

Пользуются железом все хозяйки на кухне, ведь изделия из чугуна, это не что иное как сплав железа и углерода. Посуда из чугуна равномерно нагревается, долго сохраняет температуру и служит не один десяток лет. В состав практически всех столовых приборов входит железо, а из нержавеющей стали изготовляют посуду и различные кухонные принадлежности и такие необходимые предметы, как лопаты, вилы, топоры и другие полезные приспособления. Широко используется данный металл и в ювелирном деле.

Химический состав

Теллурическое железо содержит примеси никеля (Ni) 0,6-2%, кобальта (Со) до 0,3%, меди (Сu) до 0,4%, платины (Pt) до 0,1%, углерода; в метеоритном железе никель составляет от 2 до 12%, кобальт-около 0,5%, имеются также примеси фосфора, серы, углерода.

Поведение в кислотах: растворяется в НNО3.
В природе существует несколько модификаций железа - низкотемпературная имеет ОЦК ячейку (Im3m), высокотемпературная (при температурах > 1179K) ГЦК ячейку (Fm(-3)m). В больших количествах содержится в метеоритах. В железных метеоритах при травлении или нагреве проявляются видманштеттеновы фигуры.
Происхождение: теллурическое (земное) железо редко встречается в базальтовых лавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в т.ч. и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов - железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

Семейство самородного железа (по Годовикову)
Группа самородного железа

Группа самородного никеля
> 24 ат. % Ni - тэнит
62,5 - 92 ат. % Ni - аваруит Ni3Fe
(Ni, Fe) - Самородный никель

Железо (англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO3 ,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

рассказать об ошибке в описании

Свойства минерала

Происхождение названия Обозначение химического элемента - от латинского ferrum, Iron – от староанглийского слова, означавшего этот металл
Место открытия Qeqertarsuaq Island (Disko Island), Qaasuitsup, Greenland
Год открытия известен с древних времён
Термические свойства П. тр. Точка плавления (чистого железа) 1528°С
IMA статус действителен, описан впервые до 1959 (до IMA)
Типичные примеси Ni,C,Co,P,Cu,S
Strunz (8-ое издание) 1/A.07-10
Hey"s CIM Ref. 1.57
Dana (7-ое издание) 1.1.17.1
Молекулярный вес 55.85
Параметры ячейки a = 2.8664Å
Число формульных единиц (Z) 2
Объем элементарной ячейки V 23.55 ų
Двойникование по {111}
Точечная группа m3m (4/m 3 2/m) - Hexoctahedral
Пространственная группа Im3m (I4/m 3 2/m)
Отдельность по (112)
Плотность (расчетная) 7.874
Плотность (измеренная) 7.3 - 7.87
Тип изотропный
Цвет в отраженном свете белый
Форма выделения Форма кристаллических выделений:плотные зерна с неправильными извилистыми очертаниями, плёнки, дендриты, изредка самородки.
Классы по систематике СССР Металлы

Железо - самый распространенный после алюминия металл на земном шаре; оно составляет около 5% земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном виде железо находят в метеоритах, изредка встречается самородное железо (феррит) в земной коре как продукт застывания магмы.

Железо входит в состав многих минералов, из которых слагаются месторождения железных руд.

Основные рудные минералы железа:

Гематит (железный блеск, красный железняк) - Fe 2 O 3 (до 70% Fe);

Магнетит (магнитный железняк) - Fe 3 O 4 (до 72,4% Fe);

Гетит - FeOOH

Гидрогетит - FeOOH*nH 2 O (лимонит) - (около 62% Fe);

Сидерит - Fe(CO 3) (около 48,2% Fe);

Пирит - FeS 2


Месторождения железных руд образуются в различных геологических условиях; с этим связано разнообразие состава руд и условий их залегания. Железные руды разделяются на следующие промышленные типы:

    Бурые железняки - руды водной окиси железа (главный минерал - гидрогетит), 30-55% железа.

    Красные железняки, или гематитовые руды (главный минерал - гематит, иногда с магнетитом), 51-66% железа.

    Магнитные железняки (главный минерал - магнетит), 50-65% железа.

    Сидеритовые или карбонатные осадочные руды, 30-35% железа.

    Силикатные осадочные железные руды, 25-40% железа.

Большие запасы железных руд находятся на Урале, где целые горы (например Магнитная, Качканар, Высокая и др.) образованы магнитным железняком. Большие залежи железных руд имеются вблизи Курска, на Кольском полуострове, в Западной и Восточной Сибири, на дальнем Востоке. Богатые залежи имеются на Украине.

Железо является также одним из наиболее распространенных элементов в природных водах, где среднее содержание его колеблется в интервале 0,01-26 мг/л.

Животные организмы и растения аккумулируют железо. Активно аккумулируют железо некоторые виды водорослей, бактерии.

В теле человека содержание железа колеблется от 4 до 7г (в тканях, крови, внутренних органах). Железо поступает в организм с пищей. Суточная потребность взрослого человека в железе составляет 11-30мг. В основных пищевых продуктах содержится следующее количество железа (в мкг/100г.):

Молоко - 70

Картофель, овощи, фрукты - от 600 до 900

II . Техногенные источники поступления железа в окружающую среду.

В зонах металлургических комбинатов в твердых выбросах содержится от 22000 до 31000 мг/кг железа.

В прилегающие к комбинатам почвы поступает до 31-42 мг/кг железа. Вследствие этого железо накапливается в огородных культурах.

Много железа поступает в сточные воды и шламы от производств: металлургического, химического, машиностроительного, металлообрабатывающего, нефтехимического, химико-фармацевтического, лакокрасочного, текстильного.

Пыль, дым промышленных производств могут содержать большие количества железа в виде аэрозолей железа, его оксидов, руд.

Пыль железа или его оксидов образуется при заточке металлического инструмента, очистке деталей от ржавчины, прокате железных листов, электросварке и при других производственных процессах, в которых имеют место железо или его соединения.

Железо может накапливаться в почвах, водоемах, воздухе, живых организмах.

Основные минералы железа подвергаются в природе фотохимическому разрушению, комплексообразованию, микробиологическому выщелачиванию, в результате чего, железо из труднорастворимых минералов переходит в водные объекты.

Окисление сульфидов можно описать в общем виде на примере пирита следующими микробиологическими и химическими процессами:


Как видно, при этом образуется еще один загрязняющий поверхностные воды компонент - серная кислота.

О масштабах ее микробиологического образования можно судить по такому примеру. Пирит - обычный примесный компонент угольных месторождений, и его выщелачивание приводит к закислению шахтных вод. По одной из оценок, в 1932г. в реку Огайо (США) с шахтными водами поступило около 3 млн. тонн H 2 SO 4 .

Микробиологическое выщелачивание железа осуществляется не только за счет окисления, но и при восстановлении окисленных руд. В нем принимают участие микроорганизмы, относящиеся к разным группам. В частности, восстановление Fe 3+ до Fe 2+ осуществляют представители родов Bacillus и Pseudomonas, а так же некоторые грибы.

Упомянутые здесь широко распространенные в природе процессы протекают так же в отвалах горнорудных предприятий, металлургических комбинатов, производящих большое количество отходов (шлаки, огарки и т.п.).

С дождевыми, паводковыми и грунтовыми водами высвобождающиеся из твердых матриц металлы переносятся в реки и водоемы. Железо находится в природных водах в разных состояниях и формах: в истинно растворенной форме входят в состав донных отложений и гетерогенных систем (взвеси и коллоиды).

Донные отложения рек и водоемов выступают в качестве накопителя железа. При определенных условиях железо может высвобождаться из них, в результате чего происходит вторичное загрязнение воды.

III . Химические свойства железа, его основные соединения.

Железо - элемент VIII группы периодической системы. Атомный номер 26, атомный вес 55,85 (56). Конфигурация внешних электронов атома 3d 6 4s 2 .

В природных водоемах, например, в Ладожском озере, в Неве, содержание железа меньше 0,3 мг/л. Перед поступлением в сети городского водоснабжения вода из водоемов подвергается фильтрации и действию коагулянтов, которые вместе с органическими примесями удаляют и часть железа.

Обработка воды с повышенным содержанием железа заключается в фильтровании на механических фильтрах (антрацит), коагуляции (коагулянт - глинозем Al 2 (SO 4) 3), иногда - в обработке магнитными полями (в случае магнитных форм железа).

Профилактические мероприятия, обеспечивающие безопасные условия труда при воздействии на работающих железа и его соединений определяются нормативными документами применительно к конкретным условиям производства.

V . Получение железа и его основных соединений, их практическое использование.

Из всех добываемых металлов, железо имеет наибольшее значение. Вся современная техника связана с применением железа и его сплавов. Количество добываемого железа примерно в 15 раз превосходит добычу всех остальных металлов вместе взятых.

Основным промышленным способом получения железа служит производство его в виде различных сплавов с углеродом - чугунов и углеродистых сталей. Чугуны получают доменным процессом, а стали - мартеновским, конверторным и электроплавильным процессами.

В доменном процессе в качестве основных шихтовых материалов участвуют: железная руда, кокс и известняк, необходимые для восстановления окислов железа в руде углеродом и разведения расплавленных чугуна и шлака.

В домну подается воздух или, для ускорения процесса, кислород (кислородное дутье). Углерод кокса окисляется кислородом: C+O 2 =CO 2 ; C+CO 2 =2CO.

Образующийся при этом СО и углерод кокса восстанавливают окислом железа:


Поскольку указанные реакции протекают при избытке углерода, восстановленное железо сплавляется с углеродом и образуется чугун со значительно более низкой температурой плавления, чем чистое железо. Чугун (с 4,3% С) плавится при 1135 о C, а железо при 1539 о C.

Расплавленные низкоплавкие чугун и шлак собираются в горне доменной печи и периодически выпускаются через специальные отверстия.

Способы передела чугуна - мартеновский, конверторный и электроплавильный, - сводятся к удалению избыточного углерода и вредных примесей (S, P) путем их окисления и к доводке содержания легирующих элементов до заданного путем добавления их при плавке.

Предельно допустимое содержание вредных примесей и необходимое содержание легирующих элементов установлены для каждой марки стали.

Чистое железо получают в виде порошка восстановлением его оксидов водородом или термическим разложением карбонила Fe(CO) 5 . Применение чистого железа ограничено, т.к. оно по своим механическим свойствам не удовлетворяет ряду требований к конструкционным материалам. Оно очень пластично.

Железо и его сплавы составляют основу современной техники. Значение железных сплавов для техники следует из того, что 95% всей металлической продукции составляет чугун и только 5% - сплавы остальных металлов.


Соединения железа.

Железный купорос FeSO 4 . 7H 2 O получают путем растворения обрезков стали в 20-30%-ной серной кислоте:


Железный купорос - светло-зеленые кристаллы, хорошо растворимые в воде. Применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей, для очистки сточных вод от цианидов.

При действии на железный купорос щелочи образуются гидроксиды железа - Fe(OH) 2 и Fe(OH) 3 .

Эти гидроксиды применяют в качестве пигментов. Природный гидроксид железа FeS 2 (пирит) служит сырьем для получения серной кислоты, серы и железа.

Нитрат железа Fe(NO 3) 3 получается при действии на железо азотной кислоты. Применяется как протрава при крашении хлопчатобумажных тканей и как утяжелитель шелка.

Хлорид железа FeCl 3 образуется при нагревании железа с хлором, хлорированием FeCl 2 . Применяется как коагулянт при очистке воды, как протрава при крашении тканей, как катализатор в органическом синтезе.

Сульфат железа Fe 2 (SO 4) 3 образует кристаллогидрат Fe 2 (SO 4) 3 . 9H 2 O (желтые кристаллы). Получают растворением оксида Fe 2 O 3 в серной кислоте. Применяется как коагулянт при очистке воды, для травления металлов, используется при получении меди.

Оксиды железа обычно получают при действии водяного пара на раскаленное железо. Природные оксиды железа служат основным сырьем для получения металлического железа (его сплавов).

Fe 2 O 3 и его производные (ферриты) используют в радиоэлектронике как магнитные материалы, в том числе как активные вещества магнитофонных лент.

Fe 3 O 4 служит материалом для изготовления анодов в ряде электрохимических производств.

Ферриты - при сплавлении оксида железа (III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты HFeO 2 , например феррит натрия NaFeO 2:


В технике ферритами или ферритными материалами называют продукты спекания порошков Fe 2 O 3 и оксидов некоторых двухвалентных металлов, например, Ni, Zn, Mn.

Ферриты обладают ценными магнитными свойствами и высоким электрическим сопротивлением.

Ферриты широко применяются в технике связи, счетно-решающих устройствах, в автоматике и телемеханике.

Соединения железа (VI).

Если нагревать стальные опилки или Fe 2 O 3 с нитратом и гидроксидом калия, то образуется сплав, содержащий феррат калия K 2 FeO 4 - соль железной кислоты H 2 FeO 4 , которая в свободном виде не получена.

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария BaFeO 4 .

Все ферраты - очень сильные окислители, более сильные, чем KMnO 4 .

Карбонилы железа

Железо образует летучие соединения с окисью углерода, называемые карбонилами железа. Пентакарбонил железа Fe(CO) 5 - бледно-желтая жидкость, не растворимая в воде, но растворимая во многих органических растворителях. Fe(CO) 5 получают пропусканием CO над порошком железа при 150-200 o С и давлении 100 атм. При нагревании в вакууме Fe(CO) 5 разлагается на железо и CO. Это используется для получения высокочистого порошкового железа - карбонильного железа.


Сплавы железа - это металлические сплавы на основе железа. До начала XIX века к сплавам железа относили преимущественно Fe-C (с примесями Si, Mn, S, P), получившие название сталей и чугунов. Возрастающие требования техники к металлическим материалам, прежде всего в отношении их механических свойств, жаропрочности, коррозионной стойкости в различных агрессивных средах привели к созданию новых сплавов железа содержащих Cr, Ni, Si, Mo, W и др.

В настоящее время к сплавам железа относят: углеродистые стали, чугуны, легированные стали, содержащие кроме углерода другие элементы, и стали с особыми физико-химическими и механическими свойствами.

Кроме того для введения в сталь легирующих элементов применяются особые сплавы железа, получившие название ферросплавов.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Чугун отличается от стали более высоким содержанием углерода и своими свойствами. Он хрупок, но обладает хорошими литейными свойствами. Чугун дешевле стали. Основная масса чугуна перерабатывается в сталь.

Элементы, специально вводимые в сталь для изменения ее свойств, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной. К важнейшим легирующим элементам относятся Cr, Ni, Mn, W, Mo. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий никель и хром и другие).

Из медно-никелевых сплавов (мельхиор и другие) изготавливают монеты, украшения, предметы домашнего обихода.

Гальванические покрытия металлов никелем предают им красивый внешний вид.

Список использованной литературы:

1. «Краткая химическая энциклопедия».

(издательство «Советская энциклопедия», 1963г.)


2. М.Х. Карапетьянц, С.И. Дракин - «Общая и неорганическая химия»

(издательство «Химия», 1981г.)


3. Н.А. Глинка - «Общая химия»

(издательство «Химия», 1975г.)


4. Справочник «Вредные химические вещества, неорганические соединения элементов V-VIII групп».

(издательство «Химия», 1989г.)


5. В.А. Исидоров - «Введение в химическую экотоксикологию»

(«Химиздат», 1999г.)

Железо представляет собой важный для здоровья человека микроэлемент, значение которого нельзя переоценить, так как он входит в состав семидесяти ферментов, оберегающих клетки организма. Данный металл является важнейшим биологически активным веществом, который имеет способность быстрого восстановления и окисления.

Железо участвует в транспортировке кислорода в крови

Железо в организме человека отвечает за «производство» гемоглобина крови, что нормализует питание тканей, систем и органов. Это обусловлено улучшением кровообращения, благодаря чему поддерживается активность и здоровье организма.

  • Поддержание иммунной системы;
  • Повышение физической активности;
  • Укрепление костных тканей;
  • Нормализация кровообращения;
  • Поддержание работы щитовидной железы;
  • Поддержание и восстановление ЦНС.

В организме человека присутствует очень мало железа, но, несмотря на это без него невозможны многие функции. Основная роль минерала – производство белых (лимфоцитов) и красных (эритроцитов) кровяных клеток. Лимфоциты отвечают за иммунитет, а эритроциты снабжают кровь кислородом.

В организм железо поступает непосредственно с пищей. В продуктах питания животного происхождения данный минерал содержится в легкоусвояемой форме. Существуют и растительные продукты, богатые железом, но организм тяжелее усваивает микроэлемент, поступающий с подобными источниками.

Железо поступает в пищеварительный тракт, где на него воздействует желудочный сок, вследствие чего происходит его усваивание. Всасывание микроэлемента производится непосредственно в двенадцатиперстной кишке, а также в верхнем отделе тонкого кишечника. Именно таким путём железо попадает в кровь, где связывается с белком и вместе с кровотоком переносится в необходимые отделы организма.

В каких продуктах содержится железо

В 100 граммах мяса содержится 2-3 мг железа

Аскорбиновая кислота, сорбит, фруктоза и янтарная кислота обеспечивает лучшее всасывание железа в организм. Соевый белок напротив, угнетает усваивание данного минерала, что говорит о необходимости исключения продукта из рациона при недостатке железа в организме. Чай и кофе содержат частицы, отрицательно влияющие на процесс всасывания микроэлемента, поэтому опытные диетологи рекомендуют после приёма пищи употреблять соки, что благоприятно влияет на усваивание железа клетками пищеварительной системы.

Животные источники железа

  • Мясные продукты – телятина, говядина, свинина, крольчатина, индейка;
  • Субпродукты – печень;
  • Морепродукты – моллюски, улитки, устрицы;
  • Рыба – скумбрия, горбуша;
  • Яичный желток.

Растительные источники железа

  • Злаки – цельная овсянка, гречка;
  • Бобовые – красная фасоль;
  • Овощи – свекла, сельдерей, цветная капуста, помидоры, тыква;
  • Фрукты – яблоки, груши, абрикосы, виноград, инжир, персики;
  • Сухофрукты – курага, чернослив, финики, изюм, груши, яблоки;
  • Ягоды – ежевика, черника, земляника;
  • Грецкие орехи.


Суточные нормы железа

От общего количества железа, которое поступает в организм с продуктами питания, усваивается только 10%. Это обусловлено тем, что разные продукты, содержащие данный минерал усваиваются по-разному. С продуктами животного происхождения микроэлемент усваивается гораздо быстрее и лучше. Суточная норма железа устанавливается для каждого человека индивидуально, что зависит от его образа жизни и возраста.

Суточная норма для детей

Детский организм нуждается в 5-15 миллиграммах в зависимости от возрастной группы, чем старше ребёнок, тем больше минерала ему необходимо.

Суточная норма для женщин

Женский организм при здоровом образе жизни и полноценном питании нуждается в 20 мг железа. В период беременности и в послеродовый период, потребность в минерале увеличивается, и составляет 30 миллиграмм в сутки.

Суточная норма для мужчин

Мужскому организму необходимо от 10 до 15 миллиграмм железа. Необходимость в данном микроэлементе повышается при физических нагрузках и злоупотреблении алкогольными напитками и курением.

Недостаток железа в организме

Нехватка железа в организме человека возникает в следующих случаях:

Период беременности, роста организма и лактации могут также привести к недостатку железа. Дефицит минерала может развиться после перенесенных инфекционных заболеваний, а также при патологических нарушениях кишечной флоры.

Отсутствие в рационе питания мясных продуктов и преобладание корнеплодов и картофеля, приводит к возникновению серьёзных проблем, связанных с дефицитом микроэлемента.

Последствия дефицита железа

  • Развитие мышечной слабости и одышка;
  • Сухость кожных покровов;
  • Преждевременное появление морщин;
  • Ломкость волос и ногтей;
  • Ухудшение памяти;
  • Излишняя раздражительность;
  • Сонливость;
  • Снижение способности сосредоточивания.

Люди, страдающие недостатком железа в организме, отличаются бледностью кожи и склонностью к обморочным состояниям и частым головокружениям.

Избыток железа в организме

Избыток железа в организме также приводит к неприятным последствиям, так как данный микроэлемент обладает способностью накапливания во внутренних органах человека: сердце, печени, поджелудочной железе. Подобное накопление может привести к повреждению тканей внутренних органов, а также к нарушению их физиологических функций.

Видео из интернет

Причины передозировки

  • Повышенная всасываемость железа кишечником;
  • Некоторые наследственные факторы;
  • Массивное переливание крови;
  • Неконтролируемое использование железосодержащих препаратов.

Препараты, содержащие железо

Препараты железа – представляют собой группу лекарственных средств, которые содержат соли и комплексы соединений микроэлемента, или его комбинации с другими минералами. В основном данные препараты используют для профилактики и лечения железодефицитной анемии.


Лекарственные препараты, содержащие данный минерал должны назначаться врачом после проведения необходимых анализов . Самостоятельный приём железа в виде лекарственных средств может нанести большой вред здоровью.

Правила приёма препаратов железа

  1. Запивать небольшим количеством воды;
  2. Не принимать перорально с препаратами кальция, тетрациклинами, левомицетином, а также антацидами (альмагелем, фосфалюгелем и т. д.);
  3. Не увеличивать дозировку даже после пропуска приёма.

Побочные эффекты от приёма препарата железа выражаются в виде гиперемии кожи, тошноты, снижения аппетита, появления запора или диареи, кишечных коликов и отрыжки. В данном случае употребление препаратов следует прекратить.

Особую аккуратность при приёме лекарственных средств данного минерала следует соблюдать в детском возрасте, так как передозировка железа (300 миллиграмм в сутки) может привести к летальному исходу.

В настоящее время наиболее популярны следующие препараты железа, которые обладают максимально точной дозировкой минерала и имеют минимум побочных воздействий на организм:

  1. Конферон (Conferon) – венгерское производство, выпуском по 50 капсул, каждая из которых содержит диоктилсульфосукцинат натрия – 35 мг и сульфат железа (II) - по 250 мг (50 миллиграмм элементарного железа). Натрий способствует всасыванию в организм железа и повышает его терапевтическую эффективность. Назначается при железодефицитной анемии различной этиологии.
  2. Феракрил (Feracrylum)– содержит в составе неполную железную соль полиакриловых кислот. Выпускается в виде стеклообразных хрупких пластинок жёлтого или тёмно-коричневого цвета. Трудно растворяется в воде. Используется для образования сгустков с кровяным белком. Применяется как местное гемостатическое средство.
  3. Феррум лек (Ferrum Lek) – препарат железа для внутривенных и внутримышечных инъекций, югославского производства. Расчёт дозировки лекарственного средства производится для каждого пациента индивидуально.
  4. Гемостимулин (Haemostimulinum) – назначается для стимулирования кровотечений и лечения гипохромных анемий различной этиологии. Выпускается в таблетированной форме. Содержит лактат закисного железа в количестве 0,246 грамма.

Железистые минералы флотируют под воздействием реагентов-нафтеновой олеиновой кислот олеата натрия, жидкого стекла; последнее время успешно применяют окисленный керосин. Для флотации марганцевых руд применяют реагенты: олеиновую кислоту, соевое масло, мыло, растворимое стекло соду.
От других железистых минералов отличается по вишнево-красной черте, оставляемой на неглазурованном фарфоре. Гематит - химически стойкий минерал, образует мощные месторождения железной руды, являющейся ценным сырьем для получения чугуна и стали. Известные месторождения гематитовых руд находятся в районе Курской магнитной аномалии, на Северном Урале, на Украине.
В каолине всегда присутствуют свободные железистые минералы, которые имеют коэффициент преломления 2 2 - 2 4 и интенсивно окрашены, что даже при незначительном их содержании придают каолину самые разнообразные оттенки от светло-желтого до бурого и красно-бурого цвета. На оптические свойства каолина большое влияние оказывают также и титановые минералы, которые даже при небольших количествах (не более 1 %) могут повлиять на его качество.
Большое содержание кварца, а также железистых минералов и других примесей снижает качество огне упорных глин и каолинов, что вызывает в некоторых случаях необходимость их обогащения.
По минералогическому составу основная часть шламов представляет собой железистые минералы: гематит, магнетит, феррит кальция и пирит, встречаются также кварц, силикаты, карбонаты (известь) и обломки зерен органического происхождения - коксик. Наиболее распространенным минералом является гематит. Зерна гематита имеют неправильную форму, размер их колеблется от долей микрона до 0 15 мм, в среднем 0 03 мм. Гематит в основном представлен свободными зернами, реже встречаются сростки гематита и кварца, а также сцементированные стекловидной связкой (оливин) мелкие зерна гематита. В наиболее крупных зернах гематита наблюдается остаточный магнетит. Свободных зерен магнетита не имеется.
Железорудные породы обычно окрашены в бурые, желто-бурые, зеленовато-бурые цвета, в зависимости от цвета слагающих их железистых минералов.
Они обычно содержат наряду с указанными окислами калия и натрия различные примеси, из которых наиболее вредными являются окислы железа, серный колчедан и железистые минералы, сообщающие полевым шпатам желтую или розоватую окраску. Полевой шпат увеличивает тугоплавкость эмали, повышает ее химическую стойкость и усиливает ее непрозрачность в присутствии плавикового шпата и кремнефтористого натрия. При плавке эмали очень важную роль играет крупность размола шпата. Чем больше измельчен шпат, тем легче плавится шихта.
В качестве примесей входят также кремнезем в виде кварца и опала, реже халцедона, диоксид титана в виде рутила и ильменита, железо - в виде различных железистых минералов: лимонит, гематит, сидерит и др. Некоторые каолины содержат минералы гиббсит и диаспор, вследствие чего в них отмечается повышенное содержание оксида алюминия.
Кроме того, к глинистому раствору добавляют специальные утяжелители для доведения его плотности до 1 6 - 2 0 кг / дм3 вместо 1 2 для обычного раствора. В качестве утяжелителей используют железистые минералы (магнетит, гематит), барит, концентрат колошниковой пыли. Такой раствор с утяжелителями применяют в том случае, если давление в скважине оказывается аномально высоким или в призабоинои зоне раствор начинает насыщаться прорывающимися в него газом или нефтью.
Источником железа являются кристаллические породы, содержащие многочисленные железистые минералы. При процессах выветривания железо переходит в гидроокись и перемещается водами в виде механической взвеси и коллоидов гидроокиси железа. Частично перенос осуществляется в виде сульфатов и бикарбонатов закисного железа. Принесенное таким путем железо распределяется в водоемах по законам механической дифференциации согласно с гидродинамикой бассейна. Поскольку частицы взвеси и коллоиды имеют малые размеры, наибольшие (кларковые) количества железа наблюдаются в глинистых; осадках.
Волластонит встречается главным образом в мрамо-ризованных известняках или в известковистых кристаллических сланцах. В качестве примесей ему сопутствуют кварц, железистые минералы, известковистые гранаты, диопсид, везувиан и другие минералы.
Наиболее удобны для выявления условий или колебаний окислительно-восстановительной обстановки широко распространенные в природе железистые минералы, а для выявления реакции среды минералы группы глин и карбонатные минералы.
По сводке, составленной Э. М. Бонштедт, нефелиновые месторождения СССР классифицируются следующим образом. Бесспорное промышленное значение имеют здесь громадные скопления Хибинских тундр: 1) нефелиновые пески, перемытые и в значительной степени очищенные от железистых минералов, продукты ме-хаиич. Имандра между ст. Хибины и Имандра, слагая Большой и Малый Песчаные Наволоки; по подсчету П. А. Борисова общий запас нефелиновых песков до 900 000 т; они содержат до 60 - 70 % нефелина; химич. Отдельными звеньями этой дуги являются мощные интрузии Куэльспора и Порисом-чорра. Минералогический состав этих пород приведен в табл. 3 (по данным В.
Характеристика глинистого сырья по содержанию тонкодисперсных фракций (по ГОСТ 9169 - 75.
По размеру крупнозернистых включений глины подразделяются на группы с мелкими включениями (менее 1 мм), средними - от 1 до 5 мм, крупными - свыше 5 мм. По виду крупноразмерных включений глины подразделяют на группы с включением обломков горных пород (гранит, сланцы, кварциты и др.); железистых минералов; гипса; карбонатов (кальций, доломит и др.); органических остатков и угля. В зависимости от содержания свободного кварца глинистое сырье подразделяют на группы с низким (до 10 %), средним (свыше 10 до 25 %) и высоким (свыше 25 %) содержанием кварца.
К железистым породам относятся железные руды осадочного генезиса, окисные, карбонатные, силикатные и различные железистые образования - орштейны, орзанды, а также россыпи песков, богатые железистыми минералами.
Коэффициенты селективности (А пар катионов тяжелый металл - Са2 (по B.C. Горбатову. При окислительном выветривании и почвообразовании образуются и накапливаются в биосфере минералы железа (III), преимущественно оксиды и гидроксиды, слаборастворимые и геохимически относительно инертные. В почвах обнаружены многие минералы железа (II) и железа (III), в том числе оксиды: гематит Fe2O3, магнетит FeO Fe2O3; маггемит Fe2O3; гидроксиды: гетит FeOOH, лимонит 2Fe2O3 ЗН2О; сульфиды; кислые железистые минералы: ярозит [ NaKFe6 (OH) 12 (SO4) 4l, феронатрит [ Na3Fe (SO4) 3 ЗН2О ], фосфаты, силикаты, арсенаты железа, органожелезистые соединения, аморфные осадки гидроксидов.
В протерозойский этап, продолжавшийся в течение 1 -: 1 5 млрд. лет, вулканическая деятельность была менее интенсивной, в океанах и морях накапливались различные осадки. В некоторых протерозойских водных бассейнах интенсивно развивались различные организмы (например, железоосаждающие бактерии, водоросли и др.), благодаря которым осадки обогащались железом или карбонатами. Вот почему в протерозойских отложениях довольно часто встречаются железистые минералы (руды и железистые) кварциты Курской магнитной аномалии, Канады и др.), мощные толщи известняков, нередко водорослевых, и доломитов, а иногда и прослои шунгитов - прообраз будущих углей. Во многих областях мира протерозойские отложения были погружены на большие глубины, сильно деформированы и пронизаны раскаленной магмой, вследствие чего они сильно изменились и превратились в гнейсы, кварциты и другие метаморфические породы.
Обычное механическое обогащение не обеспечивает получения качественных концентратов из таких продуктов в сочетании с удовлетворительным извлечением. Хотя вряд ли исчерпаны все возможности механического обогащения ожелезненных минеральных смесей, следует Полагать, что решение этого вопроса весьма сложно и потребует длительных изысканий принципиально новых методов на основе тонкого использования различий в физических и физико-химических свойствах ожелезнеиных минералов. В этих условиях приобретают особое значение методы избирательного растворения железистых минералов при сохранении ценных минералов редких металлов в нерастворимом остатке.
В виде случайных примесей металлическое железо попадает в руду при бурении или отборе и измельчении пробы. Если железная руда не содержит магнетита, маггемита, пирротина пли других минералов, обладающих магнитными свойствами, металлическое железо может быть удалено из руды при помощи магнита. При этом следует иметь в виду, что ряд железистых минералов, как, например, гематит (мартит и железный блеск), гетит, гидрогетит, гпдрогематит и некоторые другие обладают способностью намагничиваться в электромагнитном поле.
Узянбаш, также обнаружена марганцевая минерализация подобного типа. Здесь в восточном борту той же автомагистрали п.п. Серменево-Аскарово обнажена глинисто-щебнистая элювиальная кора выветривания предположительно по кварцевым алевролитам и кварци-то-песчаникам. Рыхлые отложения имеют яркую желтовато-бурую окраску, указывающую на повышенное содержание железистых минералов в исходных породах. В элювиальных обломках вмещающих отложений нередко встречаются налеты окислов марганца, а иногда и небольшие куски прожилково-вкрапленной до сплошной марганцевой руды.
Конечно, в песке могут попадаться еще и другие, неизмененные водою пли трудно изменяемые ею каменистые вещества, но так как эти последние более или менее подвергаются изменению при продолжительном действии воды, то нередки и такие пески, в которых содержится только почти один чистый кварц. Обыкновенный песок от подмеси посторонних минералов имеет желтый или красно-бурый цвет, зависящий от железистых минералов и железистой глины. Самый чистый песок, или так называемый кварцевый песок, попадается, однако, довольно редко и характеризуется своею бесцветностью и тем, что, взболтанный с водою, не дает мути, которая показывает подмесь глины; при сплавлении с основаниями он дает бесцветное стекло, отчего и составляет ценный материал для производства стекла.
Нефелин входит в состав этих пород как существенная часть; при выработке апатитовых концентратов получаются хвосты с содержанием 70 - 75 % нефелина. Уртитовые и йолитовые жилы находятся также в менее исследованных Ловозерских тундрах; жильные нефелиновые породы встречены также на по-бережьи Белого моря, на Турьем полуострове, в Чешской губе и др. Другой областью накопления нефелиновых пород является Южный Урал, где нефелиновые сиениты-миасскиты слагают меридиональную полосу длиной ок. Ильменские горы, Вишневые горы и др. В составе миасскитов нефелин составляет всего 20 - 25 % при довольно высоком содержании цветных железистых минералов; поэтому практич.
Это можно установить лишь минералогическим анализом, путем непосредственного изучения аутигенных минералов в шлифах, что дает возможность выявить весь ход аутигенного минералообразования и тем самым определить изменение геохимических условий на разных стадиях литогенеза. Поэтому данные химического анализа должны интерпретироваться лишь совместно с данными мине-ралого-петрографических исследований. Учитывая это, а также используя огромный фактический материал по нефтегазоносным регионам Узбекистана, мы (А. М. Акрамходжаев и X. X. Авазходжаев) предложили выделить шесть типов геохимических обстановок, определяемых по соотношению реакцион-носпособных форм железа, сингенетичным и диагенетическим железистым минералам и содержанию остаточного ОВ.
Однако бывают случаи, когда давление газа или нефти гораздо больше гидростатического для данной глубины. Чтобы предотвратить фонтанирование, в этих случаях применяют утяжеленные глинистые растворы. Для этого добавляют в раствор тонко размолотые вещества большой плотности. К таким веществам относятся железистые минералы магнетит и гематит, концентрат колошниковой пыли и барит.
В то же время, сравнивая характеристики магнитного и гравитационного полей, можно видеть, что для указанной области характерны интенсивные отрицательные гравитационные аномалии, а для района Южно-Апшеронской впадины - региональный, гравитационный, отрицательный экстремум. Все это как будто не свидетельствует в пользу развития здесь плотных магнитоактивных тел в основании осадочного разреза и требует поиска иного объяснения слабоположительного поля в Южном Каспии. В качестве такового может быть рассмотрено влияние повышенного содержания магнитоактивных, прежде всего железистых минералов в составе неконсолидированного, песчано-глинистого разреза кайнозоя Южно-Каспийской впадины. Косвенными признаками этого являются геохимические характеристики современных донных отложений, которые показывают повышенное содержание пластического магнетита и титаномагнетита в песках и железистых минералов в глинистых породах, а также повышенное содержание железа в зольных остатках нефтей Южного Каспия, часть которого могла быть прихвачена флюидом из вмещающих пород.
Присутствие в железной руде металлического железа - явление весьма редкое. В виде самородного железа (палласита) оно встречается в некоторых магматических месторождениях. В виде примеси металлическое железо попадает в руду при бурении или отборе и измельчении пробы. Если железная руда не содержит магнетита, маггемита, пирротина или других минералов, обладающих магнитными свойствами, металлическое железо может быть удалено из руды при помощи магнита. При этом следует иметь в виду, что ряд железистых минералов, как например, гематит (мар-тит и железный блеск), гетит, гидрогетит, гидрогематит и некоторые другие намагничиваются в электромагнитном поле. В таких случаях металлическое железо удалить при помощи магнита нельзя и его приходится определять наряду с FeO и Fc20s, как указано ниже.

Велер выполнил ряд важных исследований, посвященных титану, этому весьма распространенному в земной коре элементу, огромное практическое значение которого проявляется только в наше время. Открытие титана прежде всего связывается с именем отличного аналитика минералов В. Грегора, который определил в 1789 г., что в рутиле присутствует ранее неизвестный элемент. Клащрот в 1795 г. нашел, что в некоторых железистых минералах содержится новая земля - окись титана. Название элемента было дано Клапротом.
Следующий этап поисково-разведочных работ, ориентированный в основном, на поиски глубоких залежей нефти н газа в южной, центральной и северной зонах, привел к Открытию Ниязбекского месторождения н Тер-гачи. С поисками глубоких и сверхглубоких скоплений нефти и газа связываются основные перспективы нефте-газоносности Ферганской впадины. ФЕРЕЙДУН-МАРДЖАН НЕФТЯНОЕ МЕСТОРОЖДЕНИЕ - расположено на акватории Персидского залива на границе Саудовской Аравии и Ирана, к северо-востоку от месторождения Зулуф, на погружении Центральноаравийского поднятия и приурочено к куполу размерами 24 X X 24 км. Нефтеносны также песчаники свиты Бурган. ФЕРРОЛИТЫ - хемогенные породы, на 50 % и более сложенные различными железистыми минералами.
Следующий этап поисково-разведочных работ, ориентированный в основном, на поиски глубоких залежей нефти и газа в южной, центральной и северной зонах, привел к открытию Ниязбекского месторождения и Тер-гачи. С поисками глубоких и сверхглубоких скоплений нефти и газа связываются основные перспективы нефте-газоносности Ферганской впадины. ФЕРЕЙДУН-МАРДЖАН НЕФТЯНОЕ МЕСТОРОЖДЕНИЕ - расположено на акватории Персидского залива на границе Саудовской Аравии и Ирана, к северо-востоку от месторождения Зулуф, на погружении Центральноаравийского поднятия и приурочено к куполу размерами 24 X X 24 км. Нефтеносны также песчаники свиты Бурган. ФЕРРОЛИТЫ - - хемогенные породы, на 50 % и более сложенные различными железистыми минералами.
Серпентиниты обладают сетчатой и петельчатой структурами. В первом случае они состоят из клиновидного у-лизардита, который хорошо диагностируется по отрицательному удлинению. Промежутки между клиньями у-лизардита заполнены изотропным серпофитом. Петельчатая структура характерна для а-лизардитов. В серпентинитах так же присутствует хризотил. Он, как правило, заполняет трещины и является более поздним образованием. По данным А.А. Алексеева / 1976 /, серпентиниты Кирябинского массива сложены более железистыми минералами по сравнению с аналогичными породами Бирсинского комплекса.
Пересчет химических анализов флогопита из флогопитовых месторождений показал, что увеличение содержания не только FeO, но и Fe2O3 сопровождается уменьшением содержания магнезии и увеличением содержания глинозема (Коржинский, 1945Ь стр. Fe, закисное и окисное, изоморфно с Mg, так как при этом поля составов флогопита и клинопироксена оказываются наиболее узкими. При допущении изоморфности с магнием одного закисного железа точки состава флогопитов рассеиваются в большей степени. Некоторыми авторами высказывалось предположение, что первоначально все железо железо-магнезиальных слюд, а также роговых обманок и некоторых пироксенов, могло находиться в закисном состоянии, изоморфном с магнием, с последующим окислением части железа при понижении температуры. Fe / Mg в группе (Mg Fe) приводит к изменению состава этих минералов в отношении других компонентов; в частности, в флогопитах приводит к повышению содержания глинозема. Это лишает нас возможности точной передачи на одной диаграмме (фиг. Для флогопитовых месторождений, залегающих среди более железистых пород, например среди пироксеновых амфиболитов, характерны не только более железистые минералы, но изменяются и параге-нетические отношения минералов. Именно, вместо ассоциации диопсид скаполит флогопит (фиг.

Геохимия железа

ученика 9 «Б» класса

Раевского Георгия


Железо – не только самый главный металл окружающей нас природы, – оно основа культуры и промышленности, оно орудие войны и мирного труда. И трудно во всей таблице Менделеева найти другой элемент, который был бы так связан с прошлыми, настоящими и будущими судьбами человечества.

Академик Александр Евгеньевич Ферсман, выдающийся советский геохимик, минералог, географ и путешественник

Что такое геохимия?

Римский писатель-эрудит, автор «Естественной истории» Плиний-старший писал: «Железорудные копи доставляют человеку превосходнейшее орудие. Ибо сим орудием прорезываем мы землю, обрабатываем плодовитые сады и, обрезая дикие лозы с виноградом, понуждаем их каждый год юнеть. Сим орудием выстраиваем дома, разбиваем камни и употребляем железо на все подобные надобности».

Полезные ископаемые, в том числе и железо, ценились не только в начале христианской эры, во времена Плиния. В наш век, немыслимый без научно-технических разработок и развитой промышленности, их значение возросло еще больше. Но для того, чтобы человечество получало необходимые элементы в достаточном количестве, их необходимо постоянно добывать. А для этого нужно знать закономерности распределения химических элементов на планете Земля.

Изучением этих закономерностей занимают различные науки, среди которых ведущее место занимает геохимия - наука о химическом составе Земли, законах распределения элементов и их изотопов и о процессах формирования горных пород, почв и и природных вод. (Если кому интересно, то такими же изысканиями во внеземном пространстве занимается наука космохимия). Поскольку химические элементы содержатся в земной коре в виде руд и минералов, геохимия с одной стороны – родная сестра химии, а с другой – тесно соприкасается с геологией. А одной из главных областей геологии является изучение размещения полезных ископаемых в земной коре. Поэтому геохимию часто рассматривают как некую гибридную научную область, возникшую на границе геологии и химии. Так что отчасти будет справедливым такое «уравнение»: «геохимия = геология + химия» – но только отчасти.

Термин «геохимия» появился в последней четверти XIX века. Предположительно, в научный обиход его ввел один из первых профессиональных геохимиков – американский ученый Франк Кларк (1847-1931), которого называют отцом геохимии.

Одним из основателей современной геохимии по праву считается и выдающийся русский ученый В. И. Вернадский. В 1927 году он так расшифровал содержание этой науки: «Геохимия изучает химические элементы, то есть атомы земной коры и, насколько возможно, всей планеты. Она изучает их историю, их распределение и движение в пространстве-времени, их генетические на нашей планете соотношения».

В настоящее время наиболее распространенный взгляд на предмет и содержание геохимии таков: современная геохимия изучает распределение и содержание химических элементов в минералах, рудах, породах, почвах, водах и атмосферную циркуляцию элементов в природе на основе свойств их атомов и ионов.

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, в том числе Земли, где его содержание достигает 90%. Содержание железа в земной коре составляет от 4 до 5%, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86% всего железа, а в мантии 14%.

Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002 – 0,02 мг/л. В речной воде несколько выше – 2 мг/л.

Большую роль железо играет в биосфере, так как атом железа входит в состав гемоглобина – белка красных клеток крови у высших организмов. Гемоглобин участвует в доставке кислорода к тканям и клеткам.

Считается, что железо вместе с никелем, кобальтом и кислородом (по другой теории – водородом) входит в состав земного ядра. Давление в центре Земли колоссальное (около 3 миллионов атмосфер), и свойства этих элементов, в том числе и железа должны стать необычными. Ученые полагают, что при таких сжатиях водород становится металлом, а электронная структура атомов железа и других металлов (прежде всего, внешние электронные оболочки) может сильно изменяться. Однако, хотя фантасты уже много раз описали путешествие к центру Земли, непосредственно состав земного ядра мы изучить не можем: геохимики судят о нем на основе косвенных данных.

Геохимические свойства железа

Важнейшая геохимическая особенность железа - наличие у него нескольких степеней окисления. Железо в нейтральной форме - металлическое - слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO - основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ - другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Рудами называются природные минералы, содержащие железо в таких количествах и соединениях, при которых промышленное извлечение из них металла экономически целесообразно. Содержание железа в промышленных рудах изменяется в широких пределах – от 16 до 70%. В зависимости от химического состава железные руды применяются для выплавки чугуна в естественном виде или, если они содержат менее 50% Fe, после обогащения. Бóльшая часть железных руд используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах они используются в качестве природных красок (охры) и утяжелителей буровых глинистых растворов.

Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeO.Fe2O3, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в коре выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe(3PO4)2·8H2O, имеющий форму чёрных удлинённых кристаллов и радиально-лучистых агрегатов.

В природе также широко распространены сульфиды железа - пирит FeS2(серный или железный колчедан) и пирротин. Они не являются железной рудой - пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

Другие часто встречающиеся минералы железа:

· Сидерит - FeCO3 - содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом.

· Марказит - FeS2 - содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов.

· Лёллингит - FeAs2 - содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов.

· Миспикель - FeAsS - содержит 34,3 % железа. Встречается в виде белых моноклинных призм.

· Мелантерит - FeSO4·7H2O - реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие.

· Вивианит - Fe3(PO4)2·8H2O - встречается в виде сине-серых или зелено-серых моноклинных кристаллов.

В земной коре содержатся и другие, менее распространенные минералы железа, например:

Основные месторождения железных руд

Основные месторождения железа находятся в Австралии, Бразилии, Венесуэле, Индии, Канаде, Либерии, России, США, Франции, Швеции.

Россия по запасам железных руд занимает одно из первых мест в мире.

Главные месторождения железной руды на геологической карте мира

Интересный геохимический факт:

Очень немногие элементы встречаются в природе в свободном виде. В такой форме они называются самородными. Металлы и большинство неметаллов вступают в соединение с другими элементами, особенно с кислородом, очень легко. Поэтому в земной коре они почти всегда находятся в связанном виде, в составе разных соединений. Железо является элементом весьма активным, легко окисляющимся, особенно в присутствии влаги. Однако в природе встречается самородное железо. Этослучай совершенно исключительный, потому что железо в самородном виде попадает в земную кору в составе метеоритов.

А вот что рассказывает в популярной книге о геохимии железа академик Ферсман:

«Железо принадлежит к важнейшим металлам мироздания. Мы видим его линии во всех космических телах, они сверкают нам в атмосферах раскаленных звезд, мы видим бурные атомы железа, мятущиеся на солнечной поверхности, они падают к нам ежегодно на землю в виде тонкой космической пыли, в виде железных метеоритов. В штате Аризона, в Южной Африке, у нас в бассейне Подкаменной Тунгуски упали грандиозные массы самородного железа, этого важнейшего металла мироздания. Геофизики утверждают, что весь центр Земли состоит из массы никелистого железа, и что наша земная кора есть такая же окалина, как те стекловидные шлаки, которые вытекают из доменной печи во время выплавки чугуна.

…Геохимики раскрывают нам историю железа. Они говорят о том, что даже земная кора на 4,2% состоит из железа, что из металлов только алюминия больше в окружающей нас природе, чем железа. Мы знаем, что оно входит в состав тех расплавленных масс, которые в виде оливиновых и базальтовых пород застывают в глубинах как самые тяжелые и первозданные породы. железо геохимия минерал месторождение

Мы знаем, что сравнительно мало железа остается в гранитных породах, о чнм говорят их светлые – белые, розовые, зеленые – краски. Но на земной поверхности сложные химические реакции всё же накапливают огромные запасы железной руды. Одни из них образуются в субтропиках, там, где периоды тропических дождей сменяются яркими солнечными днями знойного лета, где все растворимое вымывается из горных пород, и образуются большие скопления – корки руд железа и алюминия.

Мы знаем, как на дно озер северных стран, например, нашей Карелии, бурные воды, содержащие органическое вещество , приносят весной огромные количества железа из разных горных пород; на дне озер, куда стекают воды, осаждаются горошинки или целые стяжения железа при участии особых железных бактерий… Так, в болотах, морских глубинах, в течении долгой геологической истории нашей Земли образовались скопления железных руд; и нет никакого сомнения, что в ряде случаев животная и растительная жизнь оказала свое влияние на образование этих месторождений.

Так образовались крупные Керченские месторождения; так образовались, по всей вероятности, и огромные запасы железных руд Кривого Рога и Курской магнитной аномалии.

Руды этих двух последних месторождений так давно были отложены водами древних морей, что горячее дыхание глубин успело изменить их строение, и вместо бурых железняков, как в Керчи, мы видим здесь измененные черные руды, состоящие из железного блеска (гематита, или красного железняка) и магнитного железняка.

Странствование железа не прекращается на земной поверхности. Правда, в морской воде его накапливается очень мало; и правильно говорят, что эта вода почти не содержит железа. Однако в особых, исключительных условиях даже в море, в мелководных заливах отлагаются железистые осадки, целые железорудные залежи, которые встречаются и в ряде древних морских отложений. Так образовались наши знаменитые железорудные месторождения на Украине близ Хопра, Керчи и Аяти. Но на земной поверхности – в ручьях, реках, озерах, болотах – всюду странствует железо; и растения всегда находят для себя этот важный химический элемент , без которого невозможна растительная жизнь. Попробуйте лишить железа горшочек с цветами, и вы увидите, что цветы скоро потеряют свои краски и запах, листья сделаются желтыми, начнут сохнуть…

…Так в растении, в живом организме завершается круговорот железа на земле, и красные кровяные шарики в крови человека являются одним из последних этапов в странствовании этого металла, без которого нет ни жизни, ни мирного труда».

Будущее железа

Железный век - эпоха, начавшаяся еще в первобытной истории человечества, когда возникла металлургия железа и изготовление железных орудий – продолжается. Примерно всех девяносто всех используемых человечеством металлов и сплавов сделаны на основе железа. Железа выплавляется в мире примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Пластмассы? Но они в наше время чаще всего выполняют в различных конструкциях иные функции, а если уж их в соответствии с традицией пытаются ввести в ранг «незаменимых заменителей», то чаще всего они заменяют цветные металлы, а не черные. На замену стали идут лишь несколько процентов потребляемых нами пластиков.

Сплавы на основе железа универсальны, технологичны, доступны и в массе – дешевы. Сырьевая база этого металла тоже не вызывает опасений: уже разведанных запасов железных руд людям пока хватает. Кроме того, ученые уверены, что открытия, которые будут сделаны в области геохимии железа(а в дальнейшем – и космохимии железа), дадут человечеству новые источники этого незаменимого элемента. Исследования в этой области геохимии необходимы, потому что железо можно без преувеличения назвать фундаментом нашей цивилизации.


Литература

1) Википедия, статья «Железо»

2) Большая Советская Энциклопедия, статья «Железные руды»

(http://bse.sci-lib.com/article039128.html).

Цели . Познакомить с положением железа в периодической системе химических элементов Д.И.Менделеева, строением атома, природными месторождениями, соединениями, современными методами получения, свойствами и применением железа. Способствовать выработке у школьников навыков коллективного труда и товарищеской взаимопомощи.
Оборудование и реактивы . Пробирки, таблицы по доменному производству; растворы HCl и H 2 SO 4 , порошки Fe(OH) 2 и Fe(OH) 3 , железные опилки, растворы желтой кровяной соли K 4 и красной кровяной соли K 3 .
Тип урока . Элементы лекции, рассказ, беседа.

ХОД УРОКА

Учитель . Сегодня мы продолжим речь о металлах, вы узнаете о положении железа в периодической системе химических элементов, о строении его атома, о химических свойствах металла железа, его соединениях, получении и применении, роли железа в развитии человеческого общества. Какова роль железа в человеческом обществе?
Ученик . Железо сыграло большую роль в развитии человеческого общества и не потеряло своего значения в настоящее время. Из всех металлов оно наиболее широко используется в современной промышленности.
Первобытный человек начал использовать железные орудия труда за несколько тысячелетий до нашей эры. В те годы единственным источником этого металла были упавшие на землю метеориты, которые содержат довольно чистое железо. В середине 2-го тысячелетия до
н. э. в Египте была освоена металлургия железа – получение его из железных руд. Это событие стало началом железного века в истории человечества, который пришел на смену каменному и бронзовому векам. На территории России начало железного века относится к рубежу 2–1-го тысячелетий до н. э.

Учитель . Каково распространение железа в природе?
Ученик . Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила советская автоматическая станция «Луна», обнаружено железо в неокисленном состоянии .
Учитель . В виде каких соединений железо встречается в природе?
Ученик . Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30–70% и более. (Пользуясь физической картой России, ученик показывает и называет месторождения соединений железа.)
Основными железными рудами являются:

гематит Fe 2 O 3 – содержит до 65% железа, такие месторождения железа встречаются в Криворожском районе;
лимонит Fe 2 O 3 n H 2 O – содержит до 60% железа, месторождения лимонита встречаются в Крыму, например керченское месторождение;
пирит FeS 2 – содержит примерно 47% железа, месторождения пирита встречаются на Урале.
Учитель . Как получают железо в промышленности?
Ученик . В настоящее время основным промышленным способом переработки железных руд является производство чугуна доменным процессом. Чугун – это сплав железа, содержащий
2,2–4% углерода, а также кремний, марганец, фосфор, серу. В дальнейшем большая часть чугуна подвергается переделу в сталь. Сталь отличается от чугуна главным образом меньшим содержанием углерода (до 2%), фосфора и серы.

Учитель . Большое внимание уделяется разработке методов прямого получения железа из руд без осуществления доменного процесса. В чем преимущество прямого получения железа? Главное состоит в том, что восстановление оксидов железа можно проводить без участия металлургического кокса. Его заменяют более дешевым и распространенным топливом – бурым углем, природным газом. При прямом получении железа можно использовать и бедные железные руды, шлаки других производств, содержащие железо.
Прямое восстановление железа проводят в слегка наклоненных вращающихся печах, похожих на печи, в которых получают цемент. В печь непрерывно загружают руду и уголь, которые постепенно перемещаются к выходу, противотоком идет нагретый воздух, создается температура ниже точки плавления железа.
Чтобы получить технически чистое железо прямым восстановлением, руду подвергают обогащению. При этом удается повысить массовую долю железа, отделить пустую породу (куски железа легко отделяются от шлака) и снизить содержание вредных примесей (серы и фосфора). В процессе обогащения руду измельчают в дробильных установках и подают в магнитный сепаратор. Последний представляет собой барабан с электромагнитами, в который при помощи транспортера подается измельченная руда. Пустая порода свободно проходит через магнитное поле и падает. Зерна руды, содержащие магнитные минералы железа, намагничиваются и отделяются от барабана позднее пустой породы. Такую магнитную сепарацию можно проводить несколько раз.
Затем руду обогащают методом флотации . Для этого руду помещают в емкость с водой, где растворяют флотационные поверхностно-активные вещества, которые избирательно абсорбируются на поверхности полезного минерала. В результате абсорбции флотореагента частицы минерала не смачиваются водой и в ней не тонут. Через раствор пропускают воздух, пузырьки которого прикрепляются к кусочкам минерала и поднимают их на поверхность. Частицы пустой породы хорошо смачиваются водой и оседают на дне емкости. Обогащенную руду собирают с поверхности раствора вместе с пеной. В результате содержание железа в руде может быть повышено до 70–72%
.
Рассмотрим схему одного из способов прямого получения железа. Процесс проводят в вертикальной печи, в которую сверху подают обогащенную руду, а снизу – газ, служащий восстановителем. Этот газ получают сжиганием природного в недостатке кислорода. Восстановительный газ содержит 30% СО, 55% Н 2 , 13% Н 2 О и 2% СО 2 . Следовательно, восстановителями служат оксид углерода(II) СО и водород:

Fe 2 O 3 + 3СО = 2Fe + 3CO 2 ,

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.

Восстановление ведут при температуре 850–900 °С, что ниже температуры плавления железа (1539 °С).
Для многих современных отраслей техники требуется железо очень высокой степени чистоты. Тогда очистку технического железа проводят карбонильным методом. Карбонилы – это соединения металлов с оксидом углерода(II) СО. Железо взаимодействует с СО при повышенном давлении и температуре 100–200 °С, образуя пентакарбонил железа:

Пентакарбонил железа – жидкость, которую легко можно отделить от примесей перегонкой. При температуре около 250 °С карбонил легко разлагается, образуя порошок железа:

Fe(CO) 5 = Fe + 5CO.

Если полученный порошок подвергнуть спеканию в вакууме, то получится металл, содержащий 99,98–99,999% железа. Зачем нужно получать металл такой степени чистоты?
Ученик . Железо высокой степени чистоты нужно прежде всего для изучения его свойств, т.е. для научных целей. Если бы не удалось получить чистое железо, то не узнали бы, что это – мягкий, легко обрабатывающийся металл. Химически чистое железо намного более инертно, чем железо техническое. Важной отраслью использования чистого железа является производство специальных ферросплавов, свойства которых ухудшаются от присутствия примесей .
Учитель . Каковы же химические свойства железа?
Ученик . Химические свойства железа обусловлены строением электронных оболочек его атомов. Железо – элемент побочной подгруппы VIII группы 4-го большого периода. Железо относится к d-элементам, электронная формула атома имеет окончание …3d 6 4s 2 . Железо в соединениях проявляет степени окисления +2 и +3. Максимальная степень окисления железа +6. Она проявляется в ферратах – солях несуществующей железной кислоты. Например, Na 2 FeО 4 – феррат натрия .
Учитель . Как реагирует железо с кислородом?
Ученик . В электрохимическом ряду напряжений железо стоит левее водорода, т. е. имеет более отрицательный стандартный электродный потенциал. Поэтому железо легко растворяется в соляной и разбавленной серной кислотах с выделением водорода :

Fe + 2HCl = FeCl 2 + H 2 ,

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2 .

Более концентрированную серную кислоту (40–60%) железо восстанавливает до
оксида серы(IV):

Fe + 2H 2 SO 4 = FeSO 4 + SO 2 + 2H 2 O.

В серной кислоте еще более высокой концентрации (от 80 до 100%) железопассивируется – покрывается тонкой и прочной оксидной пленкой, которая предохраняет металл от растворения. Такое же явление пассивации наблюдается и в сильно концентрированной азотной кислоте, поэтому концентрированные серную и азотную кислоты можно перевозить в железной таре.
С разбавленной азотной кислотой железо может реагировать с образованием соли железа(II), а с более концентрированным раствором кислоты – соли железа(III) и различных продуктов восстановления кислоты, например:

4Fe + 10HNO 3 = 4Fe(NO 3) 2 + NH 4 NO 3 + 3H 2 O,

3Fe + 8HNO 3 = 3Fe(NO 3) 2 +2NO + 4H 2 O,

Fe + 6HNO 3 = Fe(NO 3) 3 + 3NO 2 + 3H 2 O.

Учитель . Вспомните, что называется коррозией. Каковы ее последствия?
Ученик . Коррозия – это разрушение металла под действием окружающей среды. Образование ржавчины можно представить в следующем виде:

4Fe + 3О 2 + 6H 2 O = 4Fe(OН) 3 ,

Ржавчина отслаивается от поверхности металла, имеет много пор, поэтому не предохраняет металл от дальнейшей коррозии. Из-за коррозии гибнет огромное количество железа и его сплавов. В XIX в., когда не существовало надежных методов борьбы с коррозией, от нее гибла половина выплавляемого металла. В современных условиях от коррозии гибнет 1/6 часть выплавляемого чугуна. Поэтому борьба с коррозией – одна из важнейших задач человечества .
Учитель . Обладают ли амфотерностью соединения железа?
(На поставленный вопрос может ответить сам учитель или заранее подготовленный, интересующийся химией ученик.)
Гидроксид железа(III) амфотерен, т. е. проявляет свойства основания в реакции с кислотами:

Fe(OH) 3 + 3HCl = FeCl 3 + 3H 2 O,

и кислотные свойства в реакциях с концентрированными растворами щелочей:

Амфотерный характер имеет и оксид железа(III), который реагирует и с кислотами, и с основными оксидами:

Fe 2 O 3 + 6HСl = 2FeCl 3 + 3H 2 O,

Учитель заостряет внимание учащихся на том, что существуют характерные реакции на соединения двухвалентного и трехвалентного железа, сопровождая свой рассказ проведением опытов.
Учитель . Для обнаружения ионов железа(III) удобно применять комплексное соединение железа, называемое желтой кровяной солью или гексацианоферратом(II) калия K 4 . При взаимодействии ионов (Fe(CN) 6) 4– с ионами Fe 3+ образуется темно-синий осадок – берлинская лазурь:

Другое соединение железа – красная кровяная соль или гексацианоферрат(III) калия K 3 является реактивом на ионы Fe 2+ .
При взаимодействии ионов (Fe(CN) 6) 3– с ионами Fe 2+ также образуется темно-синий осадок – турнбулева синь:

Перечислите основные области применения железа. Какое природное значение имеет железо?
(Учащиеся отвечают на поставленные вопросы, учитель поясняет их ответы.)
Первый ученик . Ферраты различных металлов используют в современных отраслях радиоэлектроники и автоматики .
Второй ученик . Необычные соединения образует железо с водородом, азотом и углеродом. Атомы этих неметаллов имеют размеры меньше атомов железа и легко внедряются между узлов кристаллической решетки металла, образуя твердые растворы внедрения.

Твердые растворы внедрения внешне похожи на металл, но их свойства сильно отличаются от свойств железа. Большей частью это очень твердые и хрупкие вещества. С водородом железо образует гидриды FeH и FeH 2 , с азотом – нитриды Fe 4 N и Fe 2 N, с углеродом – карбид Fe 3 С – цементит, содержащийся в чугуне и стали .
Третий ученик . Железо – это металл, использование которого в промышленности и быту не имеет пределов. Широко распространена сталь в современной технике. Оксиды и соли железа применяют в производстве красок, магнитных материалов, катализаторов, лекарственных препаратов, удобрений .
Четвертый ученик . Без железа не может функционировать организм человека, в нем содержится около 3–4 г железа, из них в крови – 2 г. Железо входит в состав гемоглобина. Недостаточное содержание железа в организме человека приводит к головной боли, быстрой утомляемости и другим заболеваниям. Железо также необходимо для роста растений. В целом по значимости железо в настоящее время является главным металлом .

Для закрепления изученного материала учащимся предлагаются следующие вопросы .

1. Каково положение железа в периодической системе химических элементов?
2. Какие степени окисления проявляет железо в соединениях?
3. Какие соединения железа обладают амфотерными свойствами?
4. Как реагирует железо с азотной и серной кислотами различной концентрации?
5. Как отличить соединения двух- и трехвалентного железа?
6. Каково применение и значение соединений железа на современном этапе развития человечества?

Если позволяет время, то можно закрепить рассмотренный материал по производству железа, используя следующие вопросы .

1. В чем преимущество прямого метода получения железа?
2. Для чего применяют обогащение руды?
3. Как обогащают руду методом флотации?
4. В чем основной смысл очистки технического железа карбонильным методом?

ЛИТЕРАТУРА

Книга для чтения по неорганической химии. Сост. В.А.Крицман, М.: Просвещение, 1984;
Фельдман Ф.Г., Рудзитис Г.Е. Химия. Учебник для 9 класса общеобразовательных учебных учреждений. М.: Просвещение, 1999;
Хомченко Г.П. Химия для поступающих в вузы. М.: Высшая школа, 1993.

Важнейшая геохимическая особенность железа -- наличие у него нескольких степеней окисления. Железо в нейтральной форме -- металлическое -- слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO -- основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ -- другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко -- на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало -- в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Рудами называются природные минералы, содержащие железо в таких количествах и соединениях, при которых промышленное извлечение из них металла экономически целесообразно. Содержание железа в промышленных рудах изменяется в широких пределах - от 16 до 70%. В зависимости от химического состава железные руды применяются для выплавки чугуна в естественном виде или, если они содержат менее 50% Fe, после обогащения. Бульшая часть железных руд используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах они используются в качестве природных красок (охры) и утяжелителей буровых глинистых растворов.

Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeO.Fe2O3, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в коре выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe(3PO4)2·8H2O, имеющий форму чёрных удлинённых кристаллов и радиально-лучистых агрегатов.

В природе также широко распространены сульфиды железа -- пирит FeS2 (серный или железный колчедан) и пирротин. Они не являются железной рудой -- пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

Другие часто встречающиеся минералы железа:

· Сидерит -- FeCO3 -- содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом.

· Марказит -- FeS2 -- содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов.

· Лёллингит -- FeAs2 -- содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов.

· Миспикель -- FeAsS -- содержит 34,3 % железа. Встречается в виде белых моноклинных призм.

· Мелантерит -- FeSO4·7H2O -- реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие.

· Вивианит -- Fe3(PO4)2·8H2O -- встречается в виде сине-серых или зелено-серых моноклинных кристаллов.

В земной коре содержатся и другие, менее распространенные минералы железа, например.

Более-менее общеизвестно, что материал, в обиходе называемый железом, даже в простейшем случае представляет собой сплав собственно железа, как химического элемента, с углеродом. При концентрации углерода менее 0,3 % получается мягкий пластичный тугоплавкий металл, за которым и закрепляется название его основного ингредиента - железа. Представление о том железе, с которым имели дело наши предки, сейчас можно получить, исследовав механические свойства гвоздя.

При концентрации углерода более 0,3 %, но менее 2,14 % сплав называется сталью. В первозданном виде сталь походит по своим свойствам на железо, но, в отличие от него, поддается закалке - при резком охлаждении сталь приобретает большую твёрдость - замечательное достоинство, однако, почти совершенно сводимое на нет благоприобретенной в процессе той же закалки хрупкостью.

Наконец, при концентрации углерода свыше 2,14 % мы получаем чугун. Хрупкий, легкоплавкий, хорошо пригодный для литья, но не поддающийся обработке ковкой, металл.

Одним из определяющих условий начала производства металла являются знания о минералах, данный металл содержащих. Эти минералы должны быть заметны, обращать на себя внимание, как своеобразным внешним видом, так и некими специфическими свойствами, которые древний человек мог использовать, в том числе и в архаичных термических процессах. Все минералы железа, которые подробно рассматриваются ниже, подобными внешними данными и свойствами обладают в полной мере.

История первобытного человеческого общества была неразрывно связана с камнем и изделиями из него. Самые примитивные из этих изделий представляли собой обыкновенную речную гальку, оббитую с одного края. Возраст древнейших каменных орудий датируется периодом около 2,5 млн. лет.

Сначала наши предки использовали любую гальку. Однако, осваивая новые территории, они стали проявлять интерес к самым разнообразным горным породам. Трудно сказать, когда первобытный человек научился их различать, но то, что его излюбленным камнем на протяжении всего антропогена стал кремень, известно достоверно. Это пристрастие обусловлено удивительными свойствами кремня – его способностью при направленных ударах не раскалываться на куски, а давать тонкие отщепы и пластины с острыми краями. Оббив камень с разных сторон, древний человек получал ручное рубило и множество острых отщепов. И то и другое находило применение: рубила использовались для обработки дерева, отщепы – для резания мяса.

Прошло немало времени, прежде чем человек научился отделять от кремневых камней пластины. Это потребовало развития определенных навыков обработки камня. Расщепляя камень, древний мастер получал одну или несколько пластин – прекрасный материал для изготовления наконечников копий, скребков и ножевидных инструментов. Именно в кремне была впервые найдена и воплощена форма таких известных орудий, как топор, серп, нож, молоток.


Высокими потребительскими свойствами обладали также яшма – крепкая и очень твердая порода, обсидиан и нефрит. Однако эти камни встречались и встречаются в природе значительно реже, чем кремень.

2.2.1 Гётит (α-Fe) (гидрогётит, лимонит, бурый железняк)

Этот минерал получил свое название в честь И. В. Гете – гениального поэта, а, кроме того, выдающегося натуралиста и знатока минералов. Наверное, именно он, во всем многообразии его проявлений и стал первой рудой, из которой люди научились извлекать железо.

Рисунок 10 – Гётит

На земной поверхности железо в двухвалентной форме медленно выщелачивается из горных пород почвенными и речными водами, содержащими растительные гумусовые кислоты. На лугах и других открытых местах, в насыщенной кислородом воде озер оно окисляется до трехвалентного и осаждается в виде нерастворимого гетита, образуя «озерные», «луговые» и «дерновые» руды. Отсюда происходит еще одно название гетита – лимонит – от греческого слова «леймон», что значит «мокрый луг» или «болото» (рисунки 11,12).

Строго говоря, лимонит это не минерал, а смесь различных минералов – гидроксидов железа, из которых главным и является гётит. По существу лимонит – «природная ржавчина», откуда (за характерный ржаво-бурый цвет) происходит другое его название «бурый железняк». Именно в болотах, озерах и на морском мелководье возникают необычные на вид лимонитовые руды (рисунок 13). Лимонит таких руд напоминает бобы или мелкие птичьи яйца. Поэтому широкое распространение получили такие названия лимонита, как «бобовая руда» или «гороховый камень». Также гетит встречается в виде пачкающей руки рыхлой охры, в виде лаково черных гроздьев и почек, и каскадов сосулек, и нежно бархатных покровов и подушечек в трещинах и пещерах, и в виде блестящих вееров и алмазно-черных, либо рыжих иголочек и волосков в кристаллах аметиста – все это гидроксиды железа, то есть, все это гетит или гидрогетит. Кроме того, гетит распространен в виде «стеклянной головы» – красивых сферолитовых корок с лаково-черной поверхностью.

Рисунок 11- Добыча «озерных» руд Рисунок 12 – Добыча «луговых»

Рисунок 13 – Болотная руда

2.2.2 Гематит (Fe 2 O 3)

Гематит – минерал с красивой формой, сверкающими гранями, цветом от стального до железно-черного, с особенным красноватым оттенком, который отчетливо выделяет гематит среди похожих на него минералов (рисунок 14). Современное название этого минерала впервые встречается у Теофраста (естествоиспытателя и философа, жившего в 372–287 гг. до н.э. и написавшего трактат «О камнях»). Оно происходит от греческого слова «гэма» – кровь, что связано с вишневым или сургучно-красным цветом порошка минерала, как и синонимы гематита – «кровавик», «красный железняк». Еще один старинный синоним гематита –«железный блеск». Кристаллы гематита обладают высокими твердостью и плотностью, сильным полуметаллическим блеском, вишнево-красным цветом. Особые блестящие кристаллы таблитчатой формы раньше называли «спекуляритом», а тонкопластинчатые, иногда собранные в параллельные пакеты, – «железной слюдкой».

Рисунок 14 - Гематит

Весьма распространены сферолитовые коры гематита; в старину немецкие горняки называли их «стеклянная голова». Несравненно реже встречается другая форма расщепления кристаллов гематита – «железная роза», где пластинчатые кристаллы располагаются наподобие карт в развернутой колоде. Ценятся «железные розы» наравне с самыми дорогими минералами.

Гематит встречается также в плотных массах, в своеобразных порошковых выделениях («железная сметана»), а больше всего – в виде зернистых вкраплений в различных породах. В значительных количествах он выделяется при вулканических процессах. Известен факт, когда в 1817 г. при извержении Везувия всего за 10 суток образовалась метровая толща гематита. Плотный гематит – великолепный минерал для вырезания различных фигурок.

Именно от гематита происходи слово «гемма», обозначающее резной камень. В Древнем Египте и Вавилоне резной гематит широко использовался в качестве украшений, в Древней Греции резные камни на свой лад выполняли функции замков и ключей. Все то, что мы привыкли запирать, греки запечатывали личной печатью. Для изготовления таких печатей с углубленным изображением использовались чаще всего гематит и халцедон.

Другой сферой применения гематита была медицина. Знаменитый медик античности Диоскур называл гематит в числе пяти главных камней для врачевания (с янтарем, лазуритом, нефритом и малахитом). Гематиту приписывалась способность заживлять кровоточащие раны, врачевать болезни мочевого пузыря и венерические заболевания.

Тонкий порошок гематита «крокус» в древности использовался для полировки золотых и серебряных изделий. Надо отметить, что абразивные свойства минерала, в отличие от медицинских, не потеряли своего значения и по сей день.

Считается, что первым предназначением гематита стало его применение в виде минеральной краски. Древнейшая находка гематитовых красок в человеческих погребениях датируется примерно 40 тыс. лет до н.э.

Красная гематитовая краска – мумия – являлась обязательным компонентом мумифицирования у древних египтян (откуда и происходит ее название). Амулеты из гематита в строго определенном порядке укладывались между бинтами мумий фараонов. Вплоть до Средневековья единственной желтой краской была охра. Она изготовлялась путем смешивания гематита с мелом. Позднее краску желтого цвета стали изготавливать из смеси оксида свинца с суриком.

Наконец, удивительные кристаллы кровавика («камня скорпиона») находили особое применение в Средневековой магии. Только при наличии на пальце перстня с кровавиком средневековый маг мог дерзать вызывать к общению духов умерших.

2.2.3 Сидерит (FeCO 3)

Еще одним претендентом на звание первого рудного минерала железа в истории человечества является сидерит. Его природные проявления являются, пожалуй, наименее эффектными среди других железных руд. Они представляют, как правило, почки, конкреции или оолитовые (шаровидные) текстуры многочисленных коричнево-желтых оттенков (рисунок 15).

Рисунок 15 – Сидерит

Название минерала происходит от греческого слова «сидерос» – железо (которое, в свою очередь обозначает также звезду, т.е. железо это звездный металл – металл, приходящий с неба). Существует и другая версия происхождения слова «сидерос», получившая распространение в последние десятилетия. Согласно этой версии греческое «сидерос» имеет кавказское происхождение от корня «сидо», что означает «красный». Важным обстоятельством, подтверждающим эту версию, является общепризнанный факт, говорящий о том, что родиной рудного железа является Малая Азия, откуда посредством легендарного народа кузнецов – халиберов, о железе узнали и древние греки. Отсюда же происходит еще одно название минерала – халибит. Другие распространенные названия: гирит, флинц, железный шпат, белая руда. Особенно большое значение сидеритовые руды сыграли в развитии металлургии железа раннего средневековья, когда главным центром его производства стал Альпийский регион. Именно в Альпах находятся известные месторождения сидерита: Нейдорф и Эруберг, а также знаменитая «гора» – Айзенерц.

2.2.4 Пирит и марказит (FeS 2)

Название «пирит» происходит от греческого слова «пирос» – огонь, огнеподобный.

Удар по нему рождает искры, поэтому в древности кусочки пирита служили идеальным кресалом. Свое второе имя «колчедан» минерал получил в XVI в. – оно было присвоено пириту выдающимся немецким учёным Агриколой (Георгом Бауэром) и также имеет греческие корни, поскольку происходит от названия греческого полуострова Халкидики, богатого различными рудами. Впоследствии название «колчеданы» распространилось и на весь класс сульфидов, подобных пириту, а собственно пирит стали называть железным или серным колчеданом.

Желтый цвет пирита иногда маскируется бурой или пестрой побежалостью, т.к. он часто содержит примеси мышьяка, кобальта, никеля, реже – меди, золота, серебра. Самым характерным в облике минерала является форма его кристаллов – чаще всего это куб (рисунок 16). Самый крупный из известных кристаллов пирита, размером 50 см по ребру был найден близ города Ксанти в Северо-Восточной Греции. В Древней Индии кристаллы пирита выполняли роль амулета, защищавшего от крокодилов.

Рисунок 16 – Пирит

В природе пирит широко распространен и очень заметен. Он буквально бросается в глаза золотистым цветом, ярким блеском почти всегда чистых граней, четкими кристаллическими формами. По этим причинам пирит известен с глубокой древности. Цветом и блеском он напоминает латунь, и даже золото, за что заслужил когда-то снисходительное прозвище «кошкино золото». Еще ярче блестит полированный пирит. Из полированного пирита делали зеркала древние инки. Древнейшими известными месторождениями пирита являются Рио-Тинто и Новохун (Испанские Пиренеи), Рио-Марина (о.Эльба), Уральские горы.

Удивительным свойством пирита является замещение его кристаллами в восстановительной обстановке органических останков. При этом образуются эффектные окаменелости: пиритизированные раковины, куски древесины и даже целые фрагменты стволов и других частей растений и пр. Процесс замещения может идти очень энергично: в известном случае «фалунского человека» тело рудокопа, погибшего в глубокой (130 м) выработке, было полностью замещено пиритом всего за 60 лет. При этом полностью сохранился внешний вид человека. Возможно, отсюда и происходит знаменитая легенда о «каменном госте», известная у многих народов мира.

Марказит имеет тот же химический состав, что и пирит, но иную кристаллическую структуру и встречается гораздо реже пирита. В античные времена пирит и марказит отожествляли. Немецкие горняки позднего Средневековья, называя оба этих минерала серными колчеданами, все же выделяли марказит в особую разновидность «копьевидный», «лучистый», «гребенчатый» колчедан.

Лишь в 1814 г. установили, что марказит – особый минерал, а в 1845г. было составлено его первое научное описание и закрепилось название «марказит». Древнее арабское «марказит» первоначально обозначало также пирит, сурьму и висмут. Ювелиры до сих пор называют пирит «марказитом».

2.2.5 Магнетит (Fe 3 O 4)

Магнетит очень тяжелый минерал, обладающий полуметаллическим «тусклым» блеском, железно-черного цвета, с синей или радужной побежалостью. Для магнетита характерны черно-серые кристаллы (рисунок 17). По одной из легенд магнетит был назван в честь греческого пастуха Магнеса. Магнес пас свое стадо на одном из малоприметных плоскогорий в Фессалии и вдруг его посох с железным наконечником и его подбитые гвоздями сандалии притянула к себе гора сложенная сплошным серым камнем. Именно магнитность является редчайшим среди минералов отличительным свойством магнетита.

Рисунок 17 – Магнетит

О магнетите писали многие ученые и поэты древнего мира и Средневековья: Аристотель посвятил ему специальное сочинение («О магните»), Лукреций и Клавдиан описывали в стихах, в сказках «Тысяча и одна ночь» рассказывается о магнитной горе среди моря, сила притяжения которой была столь велика, что выдергивала гвозди из кораблей, которые тут же разрушались и тонули.

Однако реальное применение магниту, по-видимому, впервые было найдено в Китае, где во II в. до н.э. был изобретен компас. Древнейшие из известных компасов в странах Востока имели вид маленькой тележки, на которой сидел железный человечек и указывал протянутой рукой на юг.

Таким образом, задолго до открытия металлов, минералы железа привлекали к себе внимание человека и широко им использовались. Поэтому можно с уверенностью утверждать, что «случайное» открытие способа выплавки железа из руды было хорошо подготовлено всей предыдущей историей развития цивилизации.

 

 

Это интересно: