→ Равнодействующая сила при равномерном движении. Формула равнодействующей всех сил

Равнодействующая сила при равномерном движении. Формула равнодействующей всех сил

Систематизация знаний о равнодействующей всех сил, приложенных к телу; о сложении векторов.

  • Интерпретация первого закона Ньютона относительно понятия равнодействующая сил.
  • Восприятие данной формулировки закона.
  • Применение полученных знаний к знакомой и новой ситуации при решении физических задач.
  • Задачи урока (для учителя):

    Образовательные:

    • Уточнить и расширить знания о равнодействующей силе и способах ее нахождения.
    • Сформировать умения применять понятие равнодействующей силы к обоснованию законов движения (законов Ньютона)
    • Выявить уровень усвоения темы;
    • Продолжить формирование навыков самоанализа ситуации и самоконтроля.

    Воспитательные:

    • Содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира;
    • Подчеркнуть значение модулирования в познаваемости материи;
    • Обратить внимание на формирование общечеловеческих качеств:
      a) деловитость,
      b) самостоятельность;
      c) аккуратность;
      d) дисциплинированность;
      e) ответственное отношение к учебе.

    Развивающие:

  • Осуществлять умственное развитие детей;
  • Работать над формированием умений сравнивать явления, делать выводы, обобщения;
  • Учить:
    a) выделять признаки сходства в описании явлений,
    b) анализировать ситуацию
    c) делать логические умозаключения на основе этого анализа и имеющихся знаний;
  • Проверить уровень самостоятельного мышления обучающегося по применению имеющихся знаний в различных ситуациях.
  • Оборудование и демонстрации.

    1. Иллюстрации:
      эскиз к басне И.А. Крылова “Лебедь, рак и щука”,
      эскиз картины И. Репина “Бурлаки на Волге”,
      к задаче №108 “Репка” - “Задачник Физика” Г. Остера.
    2. Стрелки цветные на полиэтиленовой основе.
    3. Копировальная бумага.
    4. Кодоскоп и пленка с решением двух задач самостоятельной работы.
    5. Шаталов “Опорные конспекты”.
    6. Портрет Фарадея.

    Оформление доски:

    “Если вы в этом
    разберетесь как следует,
    вы лучше сможете следить
    за ходом моей мысли
    при изложении дальнейшего”.
    М.Фарадей

    Ход урока

    1. Организационный момент

    Проверка:

    • отсутствующих;
    • наличия дневников, тетрадей, ручек, линеек, карандашей;

    Оценка внешнего вида.

    2. Повторение

    В ходе беседы на уроке повторяем:

    • I закон Ньютона.
    • Сила – причина ускорения.
    • II закон Ньютона.
    • Сложение векторов правилу треугольника и параллелограмма.

    3. Основной материал

    Проблема урока.

    “Однажды Лебедь, Рак да Щука
    Везти с поклажей воз взялись
    И вместе, трое, все в него впряглись;
    Из кожи лезут вон,
    А возу все нет ходу!
    Поклажа бы для них казалась и легка:
    Да Лебедь рвется в облака,
    Рак пятится назад,
    А Щука тянет в воду!
    Кто виноват из них, кто прав –
    Судить не нам;
    Да только воз и ныне там!”

    (И.А.Крылов)

    В басне выражено скептическое отношение к Александру I, она высмеивает неурядицы в Государственном Совете 1816 г. реформы и комитеты, затеваемые Александром I не в силах были стронуть с места глубоко увязший воз самодержавия. В этом-то, с политической точки зрения, Иван Андреевич был прав. Но мы давайте выясним физический аспект. Прав ли Крылов? Для этого необходимо подробнее познакомиться с понятием равнодействующая сил, приложенных к телу.

    Сила, равная геометрической сумме всех приложенных к телу (точке) сил, называется равнодействующей или результирующей силой.

    Рисунок 1

    Как ведет себя данное тело? Либо покоится, либо движется прямолинейно и равномерно, т.к из I закона Ньютона следует, что существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или действие этих тел скомпенсировано,

    т. е. |F 1 | = |F 2 | (вводится определение равнодействующей).

    Сила, которая производит на тело такое же действие, как и несколько одновременно действующих сил, называется равнодействующей этих сил.

    Нахождение равнодействующей нескольких сил - это геометрическое сложение действующих сил; выполняется по правилу треугольника или параллелограмма.

    На рисунке 1 R=0, т.к.

    Чтобы сложить два вектора, к концу первого вектора прикладывают начало второго и соединяют начало первого с концом второго (манипуляция на доске со стрелками на полиэтиленовой основе). Данный вектор и есть результирующая всех сил, приложенных к телу, т.е. R = F 1 – F 2 = 0

    Как можно, опираясь на определение равнодействующей силы, сформулировать I закон Ньютона? Уже известная формулировка I закона Ньютона:

    “Если на данное тело не действуют другие тела или действия других тел скомпенсированы (уравновешены), то это тело либо покоится, либо движется прямолинейно и равномерно”.

    Новая формулировка I закона Ньютона (дать формулировку I закона Ньютона под запись):

    “Если равнодействующая сил, приложенных к телу, равна нулю, то тело сохраняет свое состояние покоя или равномерного прямолинейного движения”.

    Как поступить при нахождении равнодействующей, если силы, приложенные к телу, направлены в одну сторону по одной прямой?

    Задача №1 (решение задачи №108 Григория Остера из задачника “Физика”).

    Дед, взявшись за репку, развивает силу тяги до 600 Н, бабка – до 100 Н, внучка – до 50 Н, Жучка – до 30 Н, кошка – до 10 Н и мышка – до 2 Н. Чему равна равнодействующая всех этих сил, направленных по одной прямой в одну и ту же сторону? Справилась бы с репкой эта компания без мышки, если силы, удерживающие репку в земле, равны 791 Н?

    (Манипуляция на доске со стрелками на полиэтиленовой основе).

    Ответ. Модуль равнодействующей силы, равный сумме модулей сил, с которыми дед тянет за репку, бабка за дедку, внучка за бабку, Жучка за внучку, кошка за Жучку, а мышка за кошку, будет равен 792 Н. Вклад мускульной силы мышки в этот могучий порыв равен 2 Н. Без Мышкиных ньютонов дело не пойдет.

    Задача №2.

    А если действующие на тело силы направлены под прямым углом друг к другу? (Манипуляция на доске со стрелками на полиэтиленовой основе).

    (Записываем правила с. 104 Шаталов “Опорные конспекты”).

    Задача №3.

    Попытаемся выяснить, прав ли в басне И.А. Крылов.

    Если считать, что сила тяги трех животных, описанных в басне, одинакова и сравнима (или более) с весом воза, а также превышает силу трения покоя, то, используя рисунок 2 (1) к задаче 3, получаем после построения равнодействующей, что И.А. Крылов, безусловно, прав.

    Если же использовать данные, приведенные ниже, подготовленные обучающимися заранее, то получаем немного другой результат (см. рисунок 2 (1) к задаче 3).

    Наименование Размеры, см Масса, кг Скорость, м/с
    Рак (речной) 0,2 - 0,5 0,3 - 0,5
    Щука 60 -70 3,5 – 5,5 8,3
    Лебедь 180 7 – 10 (13) 13,9 – 22,2

    Мощность, развиваемая телами при равномерном прямолинейном движении, которое возможно при равенстве силы тяги и силы сопротивления, может быть рассчитана по следующей формуле.

    Мы рассматривали до сих пор сличай, когда на тело действуют две (или больше) силы, векторная сумма которых равна нулю. В этом случае тело может либо покоиться, либо двигаться равномерно. Если тело покоится, то общая работа всех приложенных к нему сил равна нулю. Равна нулю и работа каждой отдельной силы. Если же тело движется равномерно, то общая работа всех сил по-прежнему равна нулю. Но каждая сила в отдельности, если она не перпендикулярна направлению движения, совершает определенную работу - положительную или отрицательную.

    Рассмотрим теперь случай, когда равнодействующая всех сил, приложенных к телу, не равна нулю или когда на тело действует только одна сила. В этом случае, как это следует из второго закона Ньютона, тело будет двигаться с ускорением. Скорость тела будет меняться, и работа, совершенная силами в этом случае, не равна нулю, она может быть положительной или отрицательной. Можно ожидать, что между изменением скорости тела и работой, совершенной силами, приложенными к телу, существует какая-то связь. Попытаемся ее установить. Представим себе для простоты рассуждения, что тело движется вдоль прямой линии и равнодействующая сил, приложенных к нему, постоянна по абсолютному значению; и направлена по той же прямой. Обозначим эту равнодействующую силу через а проекцию перемещения на направление силы через Направим координатную ось вдоль направления силы. Тогда , как было показано в § 75, совершаемая работа равна Направим координатную ось вдоль перемещения тела. Тогда, как было показано в § 75, работа А, совершаемая равнодействующей, равна: Если направления силы и перемещения совпадают, то положительна и работа положительна. Если равнодействующая направлена противоположно направлению движения тела, то ее работа отрицательна. Сила сообщает телу ускорение а. По второму закону Ньютона . С другой стороны, во второй главе мы нашли, что при прямолинейном равномерно ускоренном движении

    Отсюда следует, что

    Здесь - начальная скорость тела, т. е. его скорость в начале перемещения - его скорость в конце этого участка.

    Мы получили формулу, связывающую работу, совершенную силой с изменением скорости (точнее, квадрата скорости) тела, вызванным этой силой.

    Половина произведения массы тела на квадрат его скорости носит специальное название - кинетическая энергия тела, и часто формулу (1) называют теоремой о кинетической энергии.

    Работа силы равна изменению кинетической энергии тела.

    Можно показать, что формула (1), выведенная нами для силы, постоянной по величине и направленной вдоль движения, справедлива и в тех случаях, когда сила изменяется, а ее направление не совпадает с направлением перемещения.

    Формула (1) замечательна во многих отношениях.

    Во-первых, из нее следует, что работа силы, действующей на тело, зависит только от начального и конечного значений скорости тела и не зависит от того, с какой скоростью оно двигалось в других точках.

    Во-вторых, из формулы (1) видно, что ее правая часть может быть как положительной, так и отрицательной в зависимости от того, возрастает или убывает скорость тела. Если скорость тела возрастает то правая часть формулы (1) положительна, следовательно, и работа Так и должно быть потому, что для увеличения скорости тела (по абсолютной величине) действующая на него сила должна быть направлена в ту же сторону, что и перемещение. Наоборот, когда скорость тела уменьшается правая часть формулы (1) принимает отрицательное значение (сила направлена противоположно перемещению).

    Если в начальной точке скорость тела равна нулю, выражение для работы принимает вид:

    Формула (2) позволяет вычислить работу, которую нужно совершить, чтобы покоящемуся телу сообщить скорость, равную

    Очевидно обратное: для остановки тела, движущегося со скоростью необходимо совершить работу

    очень напомннагт формулу, полученную в предыдущей главе (см. § 59), устанавливающую между импульсом силы и изменением импульса тела

    Действительно, левая часть формулы (3) отличается от левой части формулы (1) тем, что в ней сила умножается не на перемещение, совершаемое телом, а на время действия силы. В правой части формулы (3) стоит произведение массы тела на его скорость (импульс) вместо половины произведения массы тела на квадрат его скорости, фигурирующее в правой части формулы (1). Обе эти формулы являются следствием законов Ньютона (из которых они были выведены), а величины являются характеристиками движения.

    Но между формулами (1) и (3) имеется и принципиальное различие: формула О) устанавливает связь между скалярными величинами, тогда как формула (3) - это векторная формула.

    Задача I. Какую работу надо произвести, чтобы поезд, движущийся со скоростью увеличил свою скорость Масса поезда . Какая сила должна быть приложена к поезду, если это увеличение скорости должно произойти на участке длиной 2 км? Движение считать равноускоренным.

    Решение. Работу А можно найти по формуле

    Подставив сюда приведенные в задаче данные, получим:

    Но определению следовательно,

    Задача 2, Какой высоты достигнет тело, брошенное вверх о начальной скоростью

    Решение. Тело будет подниматься вверх до тех пор, пока его скорость не станет равной нулю. На тело действует только сила тяжести где - масса тела и - ускорение свободного падения (силой сопротивления воздуха и архимедовой силой пренебрегаем).

    Применив формулу

    Это выражение мы уже получили ранее (см. стр. 60) более сложным путем.

    Упражнение 48

    1. Как связана работа силы с кинетической энергией тела?

    2 Как изменяется кинетическая энергия тела, если сила, приложенная к нему, совершает положительную работу?

    3. Как изменяется кинетическая энергия тела, если приложенная к нему сила совершает отрицательную работу.

    4. Тело движется равномерно по окружности радиусом 0,5 м, обладая кинетической энергией в 10 дж. Какова сила, действующая на тело? Как она направлена? Чему равна работа этой силы?

    5. К покоящемуся телу массой 3 кг приложена сила в 40 н. После этого тело проходит по гладкой горизонтальной плоскости без трения 3 м. Затем сила уменьшается до 20 н, и тело проходит еще 3 м. Найдите кинетическую энергию тела в конечной точке его движения.

    6. Какая работа должна быть совершена для остановки поезда массой 1 000 т, движущегося со скоростью 108 км/ч?

    7. На тело массой 5 кг, движущееся со скоростью 6 м/сек, действует сила в 8 н, направленная в сторону, противоположную движению. В результате скорость тела уменьшается до 2 м/сек. Какую работу по величине и по знаку совершила сила? Какое расстояние прошло тело?

    8. На тело, первоначально находившееся в покое, начинает действовать сила в 4 н, направленная под углом 60° к горизонту. Тело движется по гладкой горизонтальной поверхности без трения. Вычислите работу силы, если тело прошло расстояние в 1 м.

    9. В чем состоит теорема о кинетической энергии?

    В инерциальных системах отсчета изменение скорости тела возможно только при действии на него другого тела. Количественно действие одного тела на другое выражают при помощи такой физической величины, как сила (). Воздействие одного тела на другое может вызвать изменение скорости тела, как по величине, так и по направлению. Следовательно, сила является вектором и определяется не только величиной (модулем), но и направлением. Направление силы определяет направление вектора ускорения тела, на которое оказывает воздействие рассматриваемая сила.

    Величину и направление силы определяет второй закон Ньютона:

    где m - масса тела, на которое действует сила - ускорение, которое сила сообщает рассматриваемому телу. Смысл второго закона Ньютона заключен в том, что силы, которые действуют на тело, определяют как изменяется скорость тела, а не просто его скорость. Заметим, что второй закон Ньютона выполняется исключительно в инерциальных системах отсчета.

    Если на тело действует одновременно несколько сил, то тело перемещается с ускорением, которое равно векторной сумме ускорений, которые появились бы при воздействии каждого из тел отдельно. Силы, оказывающие воздействие на тело и приложенные к его одной точке следует складывать в соответствии с правилом сложения векторов.

    ОПРЕДЕЛЕНИЕ

    Векторная сумма всех сил, действующих на тело одновременно, называется равнодействующей силой ():

    Если на тело действуют несколько сил, то второй закон Ньютона записывается как:

    Равнодействующая всех сил, действующих на тело, может быть равна нулю, в том случае, если происходит взаимная компенсация сил, приложенных к телу. В таком случае тело движется с постоянной скоростью или находится в покое.

    При изображении сил, действующих на тело, на чертеже, в случае равноускоренного перемещения тела, равнодействующую силу, направленную по ускорению следует изображать длиннее, чем противоположно ей направленную силу (сумму сил). В случае равномерного движения (или покоя) дина векторов сил, направленных в противоположные стороны одинакова.

    Для нахождения равнодействующей силы, следует изобразить на чертеже все силы, которые необходимо учитывать в задаче, действующие на тело. Складывать силы следует по правилам сложения векторов.

    Примеры решения задач

    ПРИМЕР 1

    Задание Тело покоится на наклонной плоскости (рис.1), изобразите силы, которые действуют на тело, чему равна равнодействующая всех сил, приложенных к телу?

    Решение Сделаем рисунок.

    На тело, расположенное на наклонной плоскости действуют: сила тяжести (), сила нормальной реакции опоры () и сила трения покоя (по условию тело не движется) (). Равнодействующую всех сил действующих на тело () можно найти векторным суммированием:

    Сложим сначала по правилу параллелограмма силы тяжести и силу реакции опоры, получим силу . Эта сила должна быть направлена вдоль наклонной плоскости по движению тела. По длине вектор должен быть равен вектору силы терния , так как тело по условию покоится. В соответствии со вторым законом Ньютона равнодействующая должна быть равна нулю:

    Ответ Равнодействующая сила равна нулю.

    ПРИМЕР 2

    Задание Груз, подвешенный в воздухе на пружине, движется с постоянным ускорением, направленным вниз (рис.3), какие силы действуют на груз? Чему равна равнодействующая сил, приложенных к грузу? Куда будет направлена равнодействующая сила?

    Решение Сделаем рисунок.

    На груз, подвешенный, на пружине действуют: сила тяжести () со стороны Земли и сила упругости пружины () (со стороны пружины), при движении груза в воздухе, обычно силой трения груза о воздух пренебрегают. Равнодействующую сил, приложенных к грузу в нашей задаче, найдем как:

    Законы Ньютона - математическая абстракция. В реальности причиной движения или покоя тел, а также их деформации, выступают сразу несколько сил. Поэтому важным дополнениям к законам механики будет введение понятия равнодействующей силы и его применение.

    О причинах изменений

    Классическая механика разделена на два раздела - кинематику, при помощи уравнений описывающую траекторию движения тел, и динамику, которая разбирается с причинами изменения положения объектов или самих объектов.

    Причиной изменений выступает некоторая сила, которая есть мера действия на тело других тел или силовых полей (например, электромагнитное поле или гравитация). К примеру, сила упругости вызывает деформацию тела, сила тяжести - падение тел на Землю.

    Сила - это векторная величина, то есть, ее действие - направленное. Модуль силы в общем случае пропорционален некоему коэффициенту (для деформации пружины - это ее жесткость), а также параметрам действия (масса, заряд).

    Например, в случае кулоновской силы - это величина обоих зарядов, взятых по модулю, квадрат расстояние между зарядами и коэффициент k, в системе СИ определяемый выражением: $k = {1 \over 4 \pi \epsilon}$, где $\epsilon$ – диэлектрическая постоянная.

    Сложение сил

    В случае, когда на тело действует n сил, говорят о равнодействующей силе, а формула второго закона Ньютона принимает вид:

    $m\vec a = \sum\limits_{i=1}^n \vec F_i$.

    Рис. 1. Равнодействующая сил.

    Поскольку F - векторная величина, сумма сил называется геометрической (или векторной). Такое сложение выполняется по правилу треугольника или параллелограмма, либо по компонентам. Поясним каждый метод на примере. Для этого запишем формулу равнодействующей силы в общем виде:

    $F = \sum\limits_{i=1}^n \vec F_i$

    А силу $F_i$ представим в виде:

    $F = (F_{xi}, F_{yi}, F_{zi})$

    Тогда суммой двух сил будет новый вектор $F_{ab} = (F_{xb} + F_{xa}, F_{yb} + F_{ya}, F_{zb} + F_{za})$.

    Рис. 2. Покомпонентное сложение векторов.

    Абсолютное значение равнодействующей можно рассчитать так:

    $F = \sqrt{(F_{xb} + F_{xa})^2 + (F_{yb} + F_{ya})^2 + (F_{zb} + F_{za})^2}$

    Теперь дадим строгое определение: равнодействующая сила есть векторная сумма всех сил, оказывающих влияние на тело.

    Разберем правила треугольника и параллелограмма. Графически это выглядит так:

    Рис. 3. Правило треугольника и параллелограмма.

    Внешне они кажутся различными, но когда доходит до вычислений, сводятся к нахождению третьей стороны треугольника (или, что тоже самое, диагонали параллелограмма) по теореме косинусов.

    Если сил больше двух, иногда удобней пользоваться правилом многоугольника. По своей сути - это всё тот же треугольник, только повторенный на одном рисунке некоторое количество раз. В случае, если по итогу контур получился замкнутым, общее действие сил равно нулю и тело покоится.

    Задачи

    • На ящик, размещенный в центре декартовой прямоугольной системы координат, действуют две силы: $F_1 = (5, 0)$ и $F_2 = (3, 3)$. Рассчитать равнодействующую двумя методами: по правилу треугольника и при помощи покомпонентного сложения векторов.

    Решение

    Равнодействующей силой будет векторная сумма $F_1$ и $F_2$.

    Поэтому запишем:

    $\vec F = \vec F_1 + \vec F_2 = (5+3, 0+3) = (8, 3)$
    Абсолютное значение равнодействующей силы:

    $F = \sqrt{8^2 + 3^2} = \sqrt{64 + 9} = 8,5 Н$

    Теперь получим тоже значение при помощи правила треугольника. Для этого сначала найдем абсолютные значения $F_1$ и $F_2$, а также угол между ними.

    $F_1 = \sqrt{5^2 + 0^2} = 5 Н$

    $F_2 = \sqrt{3^2 + 3^2} = 4,2 Н$

    Угол между ними – 45˚, так как первая сила параллельна оси Оx, а вторая делит первую координатную плоскость пополам, то есть является биссектрисой прямоугольного угла.

    Теперь, разместив вектора по правилу треугольника, рассчитаем по теореме косинусов равнодействующую:

    $F = \sqrt{F_1^2 + F_2^2 - 2F_1F_2 cos135} = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 sin45} = \sqrt{25 + 18 + 2 \cdot 5 \cdot 4,2 \cdot sin45} = 8,5 Н$

    • На машину действуют три силы: $F_1 = (-5, 0)$, $F_2 = (-2, 0)$, $F_1 = (7,0)$. Какова их равнодействующая?

    Решение

    Достаточно сложить иксовые компоненты векторов:

    $F = -5 – 2 + 7 = 0$

    Что мы узнали?

    В ходе урока было введено понятие равнодействующей сил и рассмотрены различные методы ее расчета, а также введена запись второго закона Ньютона для общего случая, когда количество сил неограниченно.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.7 . Всего получено оценок: 175.

     

     

    Это интересно: