→ Рецессивные признаки в науке о наследственности и изменчивости. По наследству от родителей потомству Гены и хромосомы, передаваемые ребенку

Рецессивные признаки в науке о наследственности и изменчивости. По наследству от родителей потомству Гены и хромосомы, передаваемые ребенку

Как известно, особенности, характеризующие потомков, передаются им от родителей через половые клетки: мужскую – сперматозоид и женскую – яйцеклетку. Слияние их при оплодотворении приводит к образованию единой клетки – зиготы, из которой развивается зародыш человека. Очевидно, что именно в этих двух половых клетках и в образовавшейся при их слиянии зиготе хранится наследственная информация о физических, биохимических и физиологических свойствах, с которыми появляется новый человек.

Материальной основой наследственности служат нуклеиновые кислоты, а именно ДНК. Но каким же образом генетическая информация передается от родителей к потомству? Как известно, новые клетки появляются в результате деления исходных материнских.

Для большинства клеток характерно физиологически полноценное клеточное деление, состоящее из ряда фаз, во время которых ядро претерпевает закономерные изменения, в результате чего образуются два ядра, совершенно идентичные исходному. Цитоплазма при этом делится на две полвины. Такое сложное деление получило название митоза, и характерно оно для клеток тела, то есть соматических клеток.

Однако в организмах растений, животных и человека, помимо соматических, имеются и половые клетки. Их образование происходит в результате особого деления. Преобразование же, которое вызывается этим делением, получило название мейоза.

Во время и митоза, и мейоза ядро теряет округлые очертания и в нем отчетливо вырисовываются его структурные компоненты, называемые хромосомами. Хромосомы имеют самые различные формы: палочек, коротких стерженьков, капель и т.д.

Значение развития генетики человека очевидно. Можно с полной уверенностью сказать, что, например, в молекулах ДНК клеток человека запрограммирована генетическая информация, контролирующая каждый миг нашей жизни. Это касается здоровья, нормального развития, продолжительности жизни, наследственных болезней, сердечно-сосудистых заболеваний, злокачественных опухолей, предрасположенности к тем или иным инфекционным заболеваниям, старости и даже смерти.

Если выделить из ядра одной клетки человека все генетические молекулы ДНК и расположить их в линию одна за другой, то общая длина этой линии составит семь с половиной сантиметров. Такова биохимическая рабочая поверхность хромосом. Это сконцентрированное в молекулярной записи наследие веков прошедшей эволюции.

Исследования последних лет доказали, что любая живая клетка, в том числе и клетка человеческого организма, представляет собой целостную систему, все составные элементы которой обнаруживают тесное взаимодействие между собой и окружающей средой, оказывающей на гены огромное влияние. Поэтому различают два понятия: генотип – комплекс всех наследственных фактов – генов, получаемых потомками от родителей, и фенотип – совокупность признаков, возникающих при взаимодействии генотипа и внешней среды.

Следовательно, в формировании фенотипа важны как генотип, так и внешняя среда, в которой происходит развитие особи. Без этого взаимодействия невозможна была бы жизнь, связанная с реализацией генетической информации, заключенной в нуклеиновых кислотах.

Закономерности генетики в большинстве случаев носят универсальный характер. Они одинаково важны для растений, для животных. Велико их значение и для человека.

Генная инженерия

Синтез идей и методов общей, молекулярной генетики и физико-химической биологии создал новое направление в современной биологии, получившее название генетическая инженерия. Генетическая инженерия представляет собой область современной биотехнологии, которая обладает новыми методами создания генотипов, нужных практике и науке. Эти методы позволяют целенаправленно изменять наследственные основы при помощи манипуляций на клеточном, хромосомном и на генном уровнях. В последнем случае принят термин – генная инженерия. Метод генетической инженерии в дальнейшем может быть перспективен в животноводстве для создания стад-клонов от высокопродуктивных животных, имеющих ценный генотип. На этом пути следует ожидать новых успехов в селекции растений.

Наибольших успехов генетическая инженерия достигла на уровне генов, что связано с развитием новых методов, в первую очередь, разработанных для клеток бактерий и вирусов.

Основанием работы по генной инженерии является, во-первых, возможность выделения отдельных генов и, во-вторых, их внесение в избранную клетку. На ряде примеров показано, что человеческие белки, например ИНСУЛИН, ИНТЕРФЕРОН, могут быть получены микробиологическим синтезом в клетках бактерий, несущих соответствующий ген человека. Свойства самих бактерий могут быть изменены в сторону сверх синтеза нужного микробного препарата. На этих основах создается новая биотехнологическая промышленность, которая в недалеком будущем окажет большое влияние на успехи сельского хозяйства и медицины.

Успешное развитие методов генетической инженерии перспективно для ряда направлений практики. Разрабатывается проблема генотерапии, т.е. лечения людей с наследственными дефектами обмена веществ путем введения в их клетки нормальных генов.

Естественно, что возможность манипуляции с индивидуальными генами человека и животных еще недостаточна для понимания функции всего генома, его организации в целом, взаимодействия его частей в обеспечении всего многообразия механизмов онтогенеза, то есть развития одной клетки до целого организма. Если добавить к этому, что в геноме любого вида записана не только программа индивидуального развития, но закодирована вся эволюция вида, то есть филогенез, становиться понятным насколько логичной и методически своевременной явилась Международная научная программа "Геном человека". Программа "Геном человека" уже к 2000 году позволит полностью расшифровать первичную структуру ДНК, то есть идентифицировать все гены человека, их регуляторные элементы. Захватывающая "Одиссея" о наследственности, которой и является эта программа, безмерно расширит наши представления о структуре и функции генома, его эволюции, откроет горизонты столь увлекательного, а возможно, и не менее опасного направленного воздействия человека на геном растений, животных и, что особенно рискованно, на свой собственный геном. Важно осознать, что это не завтрашний день фундаментальной науки, не отдаленные абстракции, а день сегодняшний. Он уже наступил и стал реальным независимо от нас, и, если не быть готовым концептуально и методически, то может пройти мимо.

Не только современный врач и специалист-биолог, но и каждый образованный человек сегодня должен знать о триумфе Международного Научного сообщества в выполнении программы "Геном человека", в результате которой успешно расшифровываются все гены человека, каждый из которых, будучи выделенным из организма и проклонированным, может выступить в качестве лечебного препарата для генотерапии; о том, что уже сегодня идентифицировано на генетических картах более 5000 структурных генов, о том, что всего за 5 лет после первых успешных попыток введения чужеродных маркеров гена в клетки человека число уже одобренных для клинических испытаний программ по генной терапии наследственных заболеваний достигло более 200! Эти итоги представляются особенно впечатляющими, если учесть, что согласно данным Всемирной Организации Здравоохранения, около 2,4% всех новорожденных на земном шаре страдают теми или иными наследственными нарушениями; около 40% ранней младенческой смертности и инвалидности с детства обусловлены наследственной патологий.

Вместе с тем, и в сегодняшних исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами изучены недостаточно. При разработке программ генной терапии принципиальное значение имеют вопросы безопасности предлагаемых схем лечения, как для самого пациента, так и для популяции в целом. Важно, что при проведении испытаний ожидаемый лечебный эффект или возможность получения дополнительной полезной информации превосходили потенциальный риск предлагаемой процедуры. Важнейшим элементом в программе генной терапии является анализ последствий проводимых процедур. Этот контроль проводят на всех этапах терапии. Проводится оценка клинического (терапевтического) эффекта, изучаются возможные побочные последствия и способы их предупреждения. НО! Всякое эпохальное открытие науки (а именно таковым и является расшифровка генома человека) может использоваться не только во благо, но и во вред человечеству (печальный пример тому открытие расщепления ядра урана, породившее атомную бомбу)! Неразумные эксперименты с геномом человека могут привести к еще более страшным последствиям!

До сих пор не утихают споры и дискуссии по вопросу клонирования. Термин "клонирование" стремительно вошел в широкий лексикон, когда ученые Рослинского института в Шотландии сообщили о существовании овечки Долли, появившейся на свет методом бесполого размножения. Долли появилась на свет так, как ни одно млекопитающее за миллионы лет существования жизни на земле, – путем клонирования. Ученые сотворили генетическое чудо, воссоздав полноценный живой организм на основе одной тканевой клетки.

Чтобы стало понятнее, в чем заключается чудо, необходимо напомнить азбучные истины. Новая жизнь – будь то человек или животное – рождается путем слияния двух половых клеток: отцовского сперматозоида и материнской яйцеклетки. При этом будущее дитя (если говорить о человеке) получает от каждого родителя по 23 хромосомы, которые и образуют его неповторимый, уникальный геном (совокупность генов). С момента слияния и до последнего вздоха гены станут управлять организмом, не только формируя в мельчайших деталях и подробностях этот организм, но программируя способности, наклонности, таланты, возможности, болезни данного человека. Долли развивалась не из оплодотворенной яйцеклетки, а из ничем непримечательной клетки кожи (!) шестилетней овцы, чьей стопроцентной копией она и является. Что же сделали рослинские умельцы? Взяли кусочек кожи и особым образом обработали эпителиальные клетки. Затем выделили ядро, где хранится вся генетическая информация. Его поместили в оболочку яйцеклетки второй овцы, предварительно удалив оттуда собственное ядро. Наконец, искусственно созданный ооцит (яйцеклетку) поместили ватку третьей, готовой к беременности овечки. Было сделано без малого 300 попыток, и только одна из них закончилась рождением живой Долли, у которой как бы три "матери": клональная, то есть оригинал, донор, давшая цитоплазму для ядра, и суррогатная, выносившая нашу "героиню". Невероятно сложно! Можно считать, что найдено глобальное решение проблемы бесплодия. Каждый мужчина и каждая женщина с любой непоправимой патологией органов деторождения теперь способны стать родителями. Причем не приемными, а самыми настоящими: воспроизвести свою собственную кровь и плоть в полном смысле слова.

Или взять другую ситуацию: в семье погибает единственный ребенок, а мать (отец) больше никогда не сможет иметь детей. Достаточно будет иметь лишь одного волоска, молочного зубика, чтобы безутешные родители вновь обрели погибшего.

Значит ли это, что появилась возможность по своему выбору "тиражировать" людей: Моцартов, Пушкиных, Эйнштейнов. Теоретически да. Практически же потребуются годы напряженной работы, чтобы научиться клонировать людей (если подобные эксперименты вообще не запретят в ближайшее время). Ведь генетический аппарат человека не сравним с овечьим. Кроме того, это сопряжено с морально-этическими, религиозными нормами и соображениями. Одно дело – улучшать породу животных, занимаясь коневодством, овцеводством, свиноводством, и совсем другое – по своему разумению воздействовать на человеческую популяцию. Кто возьмет на себя роль высшего, непререкаемого авторитета и смелость решать с кого именно следует делать "копии" и в каком количестве?

Но разве не заманчиво улучшить породу людей в целом, увеличив в ней долю гениев и вундеркиндов за счет сокращения доли индивидуумов с неразвитым интеллектом и с преступными наклонностями? Клонирование людей в подобных целях аморально. Надо исходить из того, что личность явилась в этот мир неслучайно, она неповторима и самоценна.

Общество должно создавать каждому нормальные условия для развития, просвещать и воспитывать, и тогда без всякого клонирования начнет расти интеллектуальный и нравственный потенциал его членов. Ведь природа "не разбрасывается" гениями направо и налево, а являет их миру, сообразуясь с пока неведомыми нам законами. Гений – не только редчайший, эксклюзивный набор генов, но и среда, позволившая раскрыться, реализоваться возможностям, заложенным в данных генах.

Следовательно, если бы даже удалось воспроизвести двойника, клональную копию Моцарта, Пушкина, это вовсе не значит, что человечество вновь обогатилось бы бессмертным "Реквиемом" или "Евгением Онегиным". Клонированный Моцарт будет точной генетической копией оригинала. Он унаследует (возможно, с небольшими отклонениями) те же глаза, рот, нос, улыбку и исключительные музыкальные способности. Но нет ни малейшего шанса, что он нота в ноту воспроизведет "Турецкий марш" или "Реквием". Даже если Моцарт-2 и станет композитором, он напишет другую музыку, ибо наше время звучит совсем иначе, не так как во времена великого Амадея. И Пушкин-2, рожденный сегодня, вряд ли сделал бы героями своих произведений Евгения Онегина и Ленского – типичных представителей XIX века. Чтобы состоялся гений, все должно сойтись в одной точке: генетическая программа, время, место... и еще нечто нам неведомое и неподвластное.

И все-таки отныне человек может рассчитывать ни много, ни мало на бессмертие – он получил возможность тиражировать самого себя столько раз, сколько пожелает...

Технология клонирования дает такую возможность, но, с другой стороны, подобное желание – не что иное, как крайнее проявление себялюбия, эгоизма, гипертрофированного самомнения.

Клиническая генетика

Середина и вторая половина XX столетия ознаменовались значительным уменьшением частоты и даже полной ликвидацией ряда инфекционных заболеваний, снижением младенческой смертности, увеличением средней продолжительности жизни. В развитых странах мира центр внимания служб здравоохранения был перемещен на борьбу с хронической патологией человека, болезнями сердечно-сосудистой системы, онкологическими заболеваниями.

Стало очевидным, что прогресс в области медицинской науки и практики тесно связан с развитием общей и медицинской генетики, биотехнологии. Потрясающие достижения генетики позволили выйти на молекулярный уровень познания генетических структур организма и наследования, вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Получила развитие клиническая генетика – одно из важнейших направлений современной медицины, приобретающих реальное профилактическое значение. Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза.

Генетический груз включает, с одной стороны, патологические генные мутации, наследуемые от родителей и прародителей, и называемые серегационным грузом, если в виде болезни проявляются рецессивные или нелетальные доминантные мутации генов (от латинского segregatio –выщепление).

С другой стороны, определенную часть этого груза составляют новые, вновь возникшие генные мутации (в результате мутагенных влияний внешней среды). Они не прослеживаются в восходящих поколениях и составляют так называемый мутационный генетический груз.

Согласно данным Н.П. Дубинина, частота спонтанных генных мутаций установлена в пределах 10" 10 на геном на поколение. В геноме человека имеется около 100000 генов. Расчеты показывают, что примерно у 10% людей возникают новые мутации, вызванные мутагенным воздействием факторов окружающей среды (радиационный фон Земли, действие продуктов сжигания топлива, влияния вирусов). Безусловно, частота мутаций будет значительно выше в условиях антропогенного загрязнения внешней среды. Каждый человек наследует, как минимум, 10 скрытых мутаций, опасных для здоровья. В целом по А. Кнудсону (1986), величина постнатального генетического груза составляет 0.2, т.е. у 20% членов популяции существует вероятность развития наследственных болезней (моногенных, полигенных или связанных с мутациями генов соматических клеток).

Генетический груз проявляется как бесплодие и спонтанные аборты, выкидыши и мертворождения, врожденные пороки и умственная отсталость. Он определяет риск гемолитической болезни новорожденных, проявления несовместимости матери и плода по ряду антигенов.

Суммарная частота моногенных наследственных болезней пока не может быть точно оценена, она колеблется в зависимости от уровня диагностических возможностей и различна в разных этнических группах. Отдельно взятые моногенные наследственные болезни редки, но учитывая колоссальное число нозологических форм, можно определенно сказать, что наследственные болезни вносят существенный вклад в общую патологию человека. Кроме того, по выражению Г. Фанкони, редкие болезни редки до тех пор, пока они нам мало известны. В целом суммарная частота моногенных наследственных болезней в Европейских популяциях может достигать 10 %, и не менее 10% приходится на полигенно наследуемые болезни.

Пока не существует общепринятой классификации наследственных болезней. Новые открытия свидетельствуют о том, что наряду с классическими законами менделеевского наследования действуют иные, не раскрытые до конца правила и исключения. Стало известно, что так называемое девиантное наследование (дисомии одного родителя), мутации генов соматических клеток, служащих причиной хронических заболеваний, не передаются потомству. Выяснилось существование внеядерного наследования болезней – митохондриальной патологии.

Природа гениальности

Гений – это на 99 процентов труд до изнеможения и на один процент

игра воображения.

Томас Эдисон

Изучение биографий и патографий гениев всех времен и народов приводит

к неумолимому выводу: гениями рождаются.

В.П. Эфроимсон

Генотип человека содержит около 100 тысяч генов, функционирующих как единая взаимосвязанная система, в которой любой ген находится в сложном взаимодействии со всеми другими. Характер этих взаимодействий связан с физико-химическими свойствами отдельных атомов и групп атомов, входящих в структуру ДНК (электроотрицательность, потенциал ионизации, электроно-донорная или протонодонорная способность, структура электронных облаков, возможность передавать электронные эффекты вдоль всей цепочки углеводного остова и т.д.). К сожалению, сегодня не построена даже принципиальная модель этих процессов, и теоретическая генетика вынуждена во многом использовать эмпирические данные. Идентифицирована всего лишь небольшая часть всех имеющихся в генотипе генов.

Науке известны гены-модификаторы, отвечающие за морфологию и видовые признаки, гены-регуляторы биохимических процессов, гены дифференцировки, которые дают команды, когда у зародыша развиваться тем или иным органам. Наука уже создала своего рода "таблицу Менделеева" из идентифицированных генов.

Количество всевозможных сочетаний генов в зиготах определяется числом 2 23 , и появление у зародыша тех или иных свойств предков является довольно случайным и в естественных условиях непредсказуемым. Огромное многообразие всевозможных комбинаций генов исключает появление хотя бы двух генетически идентичных людей (за исключением однояйцевых близнецов).

Гены отличаются высокой устойчивостью к внешним воздействиям и способны оставаться неизменными на протяжении многих поколений. Каждый из нас в своей генетической программе хранит память о всех ступенях развития живого вещества. И вместе с тем, под воздействием изменяющихся факторов окружающей среды или при стечении случайных обстоятельств спонтанно могут появляться мутации, сохраняться и передаваться потомству. С каждым поколением человек все более отягощается грузом отрицательной наследственности, вероятность проявления которой повышается с ухудшением качества окружающей среды.

Несмотря на способность генетического кода, снимающую случайные шумы и повреждения, время от времени различные виды повреждений генов реализуются в отдельных индивидах. Эти изменения могут быть наследственными и особенно ярко проявиться при наличии большого числа родственных браков, при которых вероятность повторения повреждения возрастает. Во время генных мутаций происходят искажения одного или нескольких генов, как правило, в периоды репликации (удвоения) ДНК. Искажение генов половых хромосом происходит в результате изменения различных факторов внутриклеточной среды и при соответствующих условиях может передаваться по наследству. Сегодня известно свыше трех тысяч генетических нарушений. Природа многих из них до сих пор остается неизвестной. Например, у четырех человек из ста есть наследственная предрасположенность к заиканию, причем у мужчин она встречается в четыре раза чаще, чем у женщин. Дальтонизмом страдает около 45% мужчин и около 1% женщин, гемофилией страдают только мужчины, хотя женщины являются носительницами поврежденного гена.

Хромосомные нарушения связаны с искажением хромосом в процессе образования гамет. Эти искажения могут быть нескольких типов. Повреждения внутри аутосомных хромосом (1-22) связаны с различными аномалиями, эмбрионы с нарушениями в хромосомах 1-15 погибают до рождения, либо рождаются нежизнеспособными. Дети с повреждениями в хромосомах 15-18 рождаются с физическими уродствами и пониженным интеллектом. Лишняя хромосома в паре 21 обуславливает болезнь Дауна. Сегодня достаточно хорошо изучены нарушения в половых хромосомах (23). Наличие лишней Х-хромосомы приводит к синдрому Клайнфельтера у мужчин (характерный женский тип телосложения, умственная отсталость, бесплодие), наличие лишней Y-хромосомы порождает высокую степень агрессивности. Исследования в колониях жесткого режима показали, что их обитатели в 30% случаев страдают именно этим дефектом. Иногда при типично мужском сочетании в половых хромосомах (XY) рождается женщина. Очень часто такой тип встречается среди спортсменок или деловых женщин. К третьей группе относятся многофакторные болезни с наследственной предрасположенностью (алкоголизм, ишемия, диабет и др.). При неблагоприятных условиях эта предрасположенность реализуется. Искажения на молеуклярном уровне могут произойти под действием физических (различные типы излучений, гипертермия и гипотермия), химических (пестициды, тяжелые металлы, некоторые лекарственные препараты, алкоголь и др.), биологических (вирусы и возбудители, вакцины) и других мутагенов и всязаны с повышением частоты врожденных пороков развития.

Но наряду с такими людьми появляются люди гениальные, с незаурядными способностями, значительно превышающими способности среднего человека. Число общепризнанных гениев в Европе и Северной Америке за исторически обозримое время исчисляется, по мнению многих независимых экспертов, в 400 – 500 человек. Что сближает этих столь разных людей между собой?

В современной науке термин "гениальность" употребляется как для обозначения способности человека к творчеству, так и для оценки результатов его деятельности, предполагая врожденную способность к продуктивной деятельности в той или иной области; гений, в отличие от таланта, представляет собой не просто высшую степень одаренности, а связан с созданием качественно новых творений. Деятельность гения реализуется в определенном историческом контексте жизни человеческого общества, из которой гений черпает материал для своего творчества". Четко разграничивает гении и таланты формула: "Гений делает то, что должен, талант – то, что может". Формула подразумевает подвластность гения той задаче, которую ставит перед ним его внутренняя сущность, его подчиненность своему творчеству, неизбежность напряжения им всех своих сил для достижения поставленной цели, для решения поставленной задачи. Может ли в основе этой последней особенности лежать какое-либо физиологическое свойство, определяемое чисто генетически?

От античности идет взгляд на гениальность как "божественный дар", как род иррационального вдохновения, "озарения свыше". Но где истоки гениальности? Говорят, безумие и гениальность – дети одной природы. Генетики усиленно ищут ген гениальности. Но есть ли такой ген? Скорее всего, отдельного гена нет. Есть лишь довольно малая вероятность уникального сочетания генов, которая отражает заложенные в человеке предпосылки стать гением. Сегодня эта вероятность оценивается учеными в 10 4 . Но гений реализуется, лишь попадая в благоприятные условия, где эти предпосылки могут развиться до высокого уровня. Здесь вероятность еще ниже – 10 11 . Благоприятная социальная среда способствует реализации природных задатков, небагоприятная превращает потенциального гения в заурядность.

По оксфордскому словарю, гений – это "природная интеллектуальная сила необычайно высокого типа, исключительная способность к творчеству, требующему воображения, оригинального мышления, изобретения или открытия".

Проблема гениальности на генетическом уровне широко и всесторонне изучена в работах крупнейшего советского генетика и знатока истории В.П. Эфроимсона. Исследуя психику, творчество, жизнь и генеалогию некоторых выдающихся людей, он пришел к выводу, что гениальность – это некое пограничное состояние между "светом и тьмой", лезвие бритвы, тонкая грань между психическим расстройством и нормой. Примеров тому в истории человечества предостаточно.

Чем же отличается гений от других, даже, может быть, и очень способных людей? Прежде всего, уникальным сочетанием генов, возникшим из случайной комбинации генов его предков. Он наделен благодаря этому живым и любознательным умом, обостренностью ощущений, исключительной восприимчивостью окружающего мира, эмоциональной напряженностью, ярко выраженным темпераментом. Обстоятельства могут выковать из индивида гения, если у индивида есть задатки от природы.

В благоприятных условиях среды, окружающей такого индивида, при наличии трудолюбия задатки развиваются в талант, в противном случае – в непризнанного гения, как правило, в конечном итоге деградирующую личность с разрушенной психикой. Дети, имея природные задатки, например, врожденный абсолютный музыкальный слух или пластичность движений, инстинктивно стремятся сами развивать эти задатки. Почему ребенку нравится выполнять ту или иную роль, почему у него склонности к тому или иному занятию? Взрослым – родителям, педагогам это нужно замечать и помогать ребенку реализовать свои возможности. Значение именно ранних воздействий, развивающих интеллект, доказывается тем, что 20% будущего интеллекта приобретается к концу 1-го года жизни, 50% – к 4-м годам, 80% – к 8 годам, 92% – до 13 лет. Психоанализ, биология и генетика сходятся теперь в понимании того, что и творческие способности индивида зависят от условий, в которых он провел свои первые годы жизни. Шансы, представленные или отнятые в это время, определяют его последующую способность к образованию.

Стержень концепции Эфроимсона состоит в убеждении, что потенциальные и состоявшиеся таланты и гении имеют, как правило, в своем генотипе генетические факторы внутреннего "допинга", резко повышающие психическую и интеллектуальную активность на фоне тех или иных способностей. Описаны четыре зависимых от генов биохимических стимулятора: 1) гиперурикемия или повышенный уровень мочевой кислоты, дающий подагру; 2) высокое содержание андрогенов у женщин с синдромом Морриса; 3) повышенный уровень катехоламинов при синдроме Марфана; 4) циклическая стимуляция повышенной умственной активности при слабой форме маниакально-депрессивного психоза. Ученый призывает исследовать, как в разных ситуациях гены, стимулирующие творческую активность, и зависимые от генотипа гормональные допинги определяли судьбу личностей в истории.

Исследуя феномен А.С. Пушкина, Эфроимсон изучил его генеалогическое древо до пятого колена, предрасположенности, характеры и наклонности всех его предков по материнской и отцовской линиям. По его наблюдениям, одаренность Пушкина развивалась на фоне ярко выраженой циклотимии (склонности к быстрой смене спадов и подъемов настроения), унаследованной им от своих родителей – кровных родственников (предки отца и матери поэта в пятом колене были родными братьями). Периоды резкого возбуждения, аффекта, как правило, сопровождались резким подъемом творческой активности и продуктивности. Этому способствовали его природные задатки: феноменальная память, широкий кругозор, гибкость ума. Психиатры охарактеризовали такой тип как акцентуированную личность. В молодости повеса, донжуан, дуэлянт, он с возрастом стал более управлять своими страстями и направлять их в творческое русло. По воле случая поэт оказался наследником еще одного фактора психической стимуляции умственной активности. Известно, что его ближайшие родственники страдали подагрой, был склонен к ней и сам поэт. Заболевание это связано с увеличением в крови мочевой кислоты, по своим свойствам и действию похожей на кофеин, большие дозы которого вызывают гипертимическую стимуляцию умственной активности. Как правило, обострение этой болезни происходит в осенний период. Эти факторы, соединившись в геноме Пушкина в их пограничном выражении, оказались стимуляторами его творческой деятельности, которые, воздействуя на необыкновенную природную одаренность поэта, дали человечеству гения с ярко выраженной цикличность в творчестве, максимум которой приходился в большинстве случаев на осенний период (другие выдающиеся подагрики – Христофор Колумб, Эразм Роттердамский, Мартин Лютер, Борис Годунов, Джон Мильтон, Петр I, Бисмарк, Б. Франклин, Галилей, Ф. Бэкон, Лейбниц, Ньютон, Дарвин, Кант, Шопенгауэр, Мильтон, Гете, Пушкин, Тютчев, Микеланджело, Рембрандт, Рубенс, Ренуар, Бетховен, Мопассан, Тургенев, Блок и т.д.).

Другой пример – творчество Ганса Христиана Андерсена. Исследователи, изучавшие его жизнь и творчество, отмечают, что у него налицо все признаки синдрома Марфана – особой формы диспропорционального гигантизма, связанного с пороками развития мезодермы и экзодермы зародышевого листка эмбриона. Сегодня ген сндрома Марфана локализован, он находится в длинном плече хромосомы 15. Люди с синдромом Марфана имеют массу аномалий – высокий рост при относительно коротком туловище, непропорционально длинные конечности, арахдодактилия (чрезмерно длинные ("паучьи") пальцы), вывих хрусталика, большую голову с худым лицом и удлиненным выступающим носом, недоразвитость жировой ткани, воронкообразную форму груди, что может сопровождаться пороком сердца и аневризмой аорты. Такие люди характеризуются психической неустойчивостью, биохимическими нарушениямии, связанными с выбросом в кровь больших количеств адреналина. Чаше всего, такие люди психически ненормальны. Но в редчайших случаях, при определенном сочетании с другими генами, люди с синдромом Марфана показывают очень высокий интеллект. Явные признаки синдрома Марфана были налицо у таких выдающихся личностей, как Николо Паганини, Авраам Линкольн, Шарль де Голль, К. Чуковский. Л. Ландау, почти доказано, что синдром Марфана был у В. Кюхельбекера.

В длинном ряду исследований была отмечена исключительная деловитость, физическая и умственная энергия женщин с тестикулярной феминизацией (синдромом Морриса) – наследственной нечувствительностью периферических тканей к маскулинизирующему действию мужского гормона семенников. Она является результатом дефекта гена, кодирующего клеточный рецептор мужского полового гормона тестостерона. Все клетки такого эмбриона обладают половыми хромосомами X и Y. Такой хромосомный набор определяет наряду с наличием женских гормонов повышенное содержание в крови мужского полового гормона тестостерона. Однако, поскольку клеточные рецепторы для тестостерона отсутствуют, он не воспринимается клетками, на которые действуют поэтому только женские гормоны, заставляющие зародыш развиваться, если можно так сказать, в женскую сторону.

В конечном итоге на свет появляется псевдогермафродит, который обладает мужским половым набором хромосом, однако выглядит как девочка. В ее теле во время эмбриогенеза успевают сформироваться семенники, но они не опускаются в мошонку (из-за ее отсутствия) и остаются в брюшной полости, что нередко приводит впоследствии к паховым грыжам. Матка и яичники полностью отсутствуют, что неизбежно приводит к полному бесплодию, хотя не исключает более-менее нормальной половой жизни. Следовательно, синдром Морриса не может рассматриваться как врожденное, передающееся по наследству нарушение. С вероятностью около 1:65 000 он возникает в каждом новом поколении в результате случайных генетических нарушений.

Псевдогермафродитизм должен был бы порождать тягчайшие психические травмы, но эмоциональная устойчивость этих больных, их жизнелюбие, многообразная активность, энергия, физическая и умственная, просто поразительны. Например, по физической силе, быстроте, ловкости они настолько превосходят физиологически нормальных девушек и женщин, что девушки и женщины с синдромом Морриса (легко определяемые по отсутствию полового хроматина в мазках слизистой рта) подлежат исключению из женских спортивных состязаний.

При редкости синдрома он обнаруживается почти у 1% выдающихся спортсменок, т. е. в 600 раз чаще, чем можно было бы ожидать, если бы он не стимулировал исключительное физическое и психическое развитие.

Гигантизм при синдроме Марфана бросается в глаза и прослеживается в потомстве, тогда как тестикулярная феминизация очень интимна и больные ею потомства не оставляют. Тем удивительнее, что все же в истории есть одна необычайно много совершившая девушка-героиня с этим синдромом.

Жанна д"Арк (1412 - 1432) была высокого роста для своего времени, крепко сложена, исключительно сильна, но стройна и с тонкой женственной талией. Лицо ее было очень красиво. Телосложение отличалось несколько мужскими пропорциями. Она очень любила физические и военные упражнения, очень охотно носила мужскую одежду. У нее отсутствовали особенности функционирования женского организма, что позволяет нам по совокупности других особенностей через пять с половиной веков уверенно ставить Жанне д"Арк диагноз тестикулярной феминизации – синдрома Морриса. И основная загадка этой величайшей героини, величайшей гордости Франции, круто изменившей ход истории, сохранившей человечеству одну из сильнейших наций, разрешается естественно-научным методом генетического анализа.

Если "средний" человек со средними способностями характеризуется некой "генетической гармонией" – нормой, то гений – это отклонение от нормы. Но отклонение перерастает в гениальность лишь при условии тесного взаимодействия генетической и социальной программ человека.

Стресс и недостаток материнской заботы в ранней жизни отражаются не только на самих детях, но и на последующих поколениях. Николай Кукушкин разбирает этот и другие случаи, когда приобретённые признаки, вопреки классическим представлениям о генетике, могут передаваться по наследству.

Крысиные ласки

Мыши, выросшие в неполной "семье", склонны к агрессии, выяснили ученые Грызуны, росшие без отцов, демонстрировали плохие способности устанавливать социальные связи, а также были более агрессивными по сравнению со сверстниками из нормальной группы.

Если вы думаете, что депутаты Госдумы, в последние годы особенно активно озаботившиеся психическим здоровьем детей, далеки от научной стороны вопроса, то вы их недооцениваете. Исследование учёных из университета Тафтс в США показывает , насколько важно изолировать детей от стресса и обеспечить материнской заботой. Крысы, выращенные в условиях социального конфликта и озабоченной посторонними проблемами матери, во взрослой жизни отличаются серьёзными эндокринными изменениями, повышенной агрессивностью и что самое интересное - ослабленным материнским инстинктом. И если на страже моральной стороны вопроса в нашей стране стоят бдительные законодатели, то нас более всего интересуют вопросы генетики. Недостаток заботы в одном поколении приводит к её последующему недостатку в следующем: чем не форма наследственности?

О бесполезности упражнений

В XIX веке научное сообщество всерьёз задумалось о фундаментальной проблеме биологии: проблеме происхождения видов. Оставив в стороне версию, изложенную в Библии - на протяжении тысячи лет однозначно самом авторитетном источнике знания - натуралисты задались вопросом: как происходит эволюция признаков, а с ними - и целых видов? Две точки зрения на этот вопрос обычно связывают с теориями Жана-Батиста Ламарка и Чарлза Дарвина. В основе гипотезы Ламарка лежит идея о наследуемости приобретённых признаков, то есть таких признаков, которые развились у организма в течение жизни. Модель Ламарка можно сформулировать так: «сначала - признак, потом - наследование». Классический (и порядком надоевший) пример - это формирование шеи у жирафа. По Ламарку, предкам жирафов приходилось всё время вытягивать шею, чтобы достать до верхних листьев на высоких деревьях. Такое «упражнение» шеи передавалось их потомкам, которые продолжали тянуться всё выше и выше - в результате через много поколений жирафы стали походить на башенный кран. Дарвин подходит к вопросу эволюции с другой стороны. Её можно сформулировать так: «сначала - наследование, потом - признак». По Дарвину, признаки формируются не целенаправленным упражнением, а естественным отбором. Упражнение шеи как таковое, по Дарвину, не может напрямую передаться потомству. Зато среди любой группы жирафов будут животные с шеей покороче, а будут - с шеей подлиннее. Последним достанется больше еды, а значит, они будут лучше выживать и размножаться - это и есть естественный отбор. Цикл, повторяясь много поколений, и приводит к формированию самых причудливых (и нелепых, если уж речь о жирафах) форм живого.

Трофим Лысенко и лысенковщина Советский агроном, биолог, академик Трофим Денисович Лысенко трижды был лауреатом Государственной премии СССР, удостоен звания Героя Социалистического Труда, награжден 8 орденами Ленина. Но его монополизм в биологии, подкрепленный протекцией Сталина, вызвал уничтожение целых научных школ и гибель многих ученых

В начале XX века стало понятно, что наследственная информация заложена в хромосомах (а внутри хромосом - в дезоксирибонуклеиновой кислоте), и были сформулированы базовые принципы генетики. Это привело к тому, что теория Дарвина единолично возобладала в научном сообществе, а интерес к ламаркизму сохранился только в историческом контексте. Действительно, с введением понятия гена ламаркизм стал абсурден: оттого, что вы будете возить компьютер по городу, у него не разовьётся система навигации. Все изменения должны начинаться с изменения самого «кода», то есть с генетических мутаций. Последняя печальная попытка отступить от этих принципов была предпринята в СССР 30-х гг. Уж очень привлекательной для идеологии того времени была идея о том, что признаки можно развивать целенаправленно, прямым воздействием на родительский организм, а не выбирая из вариантов, предлагаемых природой.

Не всё так просто

Итак, приобретённые признаки не передаются по наследству. Если вам сломают нос, у ваших детей он не будет кривым. И всё-таки имя Ламарка всё чаще и чаще всплывает в серьёзной научной литературе последних десяти лет. Конечно, никто не собирается отменять генетику и возвращаться к экспериментам лысенковцев. Но как и во многих подобных случаях, детальное изучение генома и механизмов наследования показало, что категорическое отрицание наследуемости приобретённых признаков не слишком дальновидно.

В XVII-XIX вв. раскопки уничтоженного извержением вулкана города Помпеи возродили интерес к античной культуре и отчасти дали толчок развитию неоклассицизма. Хотя примеры эпигенетических (буквально - «надгенетических») механизмов наследования были известны и раньше, настоящими Помпеями ламаркизма можно считать местечко Оверкаликс на севере Швеции. Его особенность состояла, во-первых, в относительной изолированности, а во-вторых, в исключительной дотошности его жителей. Начиная с XVI в., поколение за поколением они вели детальные записи о населении городка, их происхождении, причинах смерти, а также обо всём более-менее значительном, с ними происходившем: например, об урожаях и погодных условиях (и с тем, и с тем на севере Швеции в то время было не очень). В результате в распоряжении Ларса Бигрена, происходящего, как нетрудно догадаться, из самого Оверкаликса, и его коллег оказалась уникальная база данных, описывающая буквально всё, что происходило с целой человеческой популяцией на протяжении сотен лет.

Проделав колоссальную работу по анализу данных, учёные сопоставили смертность от диабета и сердечно-сосудистых заболеваний со статистикой урожаев и цен на еду. Казалось бы, всё предсказуемо: если мы слишком много едим, то больше болеем . Но результаты оказались гораздо интереснее. Выяснилось, что доступность еды в детском возрасте влияет не только на текущее, но и на последующие поколения. Причём влияет негативно. Другими словами, если ваш отец или даже дед выросли в условиях голода - ваши шансы развить диабет или атеросклероз значительно падают.

Здесь читаем, здесь - не читаем

Гены не играют определяющей роли в появлении левшей, выяснили ученые Британские ученые выяснили, что леворукость лишь незначительно зависит от генов. До сих пор многие ученые утверждали, что лево- или праворукость - наследуемая черта.

Оставив сами результаты эксперимента как пищу к размышлению для бабушек, зорко следящих за сытостью внуков, рассмотрим сам факт передачи «информации о голоде» по наследству. Налицо типичный ламаркизм: «упражнение» организма, «закалённого» голодом, передаётся по наследству и сохраняется по крайней мере в течение двух поколений. Разве это не противоречит генетике? На самом деле, «надгенетическое» наследование не противоречит, а дополняет представления о последовательности ДНК как носителе генетической информации. В случае с жителями Оверкаликса, как и в большинстве других «жизненных» примеров эпигенетического наследования, нам пока не известны конкретные механизмы, стоящие за наблюдаемыми явлениями. Но мы знаем о принципиальном существовании таких механизмов - многие из них подробно описаны на более простых, экспериментальных системах.

Наиболее известным способом передать признак по наследству в обход последовательности ДНК является её химическая модификация. Участки ДНК не равнозначны: какие-то из них считываются активно, какие-то - «молчат». Метилирование (то есть добавление небольшой химической группы из одного атома углерода и трёх атомов водорода) к одному из нуклеотидов ДНК может приводить к «выключению» гена, в состав которого входит этот нуклеотид. После деления клетки ДНК удваивается: каждая клетка наследует свою копию. Оказывается, в таких случаях может копироваться и «рисунок» метилирования! Наконец, метилирование может передаваться по наследству: метилирование ДНК зародыша будет «скопировано» с метилирования ДНК сперматозоида и яйцеклетки. Грубо говоря, помимо собственно генов мы можем наследовать информацию о том, какие гены работают, а какие - нет. Помимо метилирования существует масса других механизмов, но принципиально они схожи.

Патологическое стремление к похудению может быть заложено в генах Гены могут делать некоторых женщин более восприимчивыми к общественному прессингу по поводу форм женского тела, навязывающему худобу как стандарт красоты, установили ученые из США, труд которых опубликован в журнале International Journal of Eating Disorders.

Теперь представьте, что на метилирование ДНК может воздействовать среда. Это гораздо проще представить, чем прямое изменение средой последовательности ДНК. Например, голод в Оверкаликсе вызывает у его малолетних жителей повышенное выделение некоего гормона А. Этот гормон воздействует на клетки организма (в том числе на формирующиеся яйцеклетки или сперматозоиды) и вызывает в них производство фермента Б. Этот фермент, в свою очередь, либо метилирует, либо, наоборот, убирает метилирование с определённого набора генов, таким образом меняя распределение «включённых» и «выключенных» генов - а так как процесс происходит и в предшественниках половых клеток, он зафиксируется и в будущем потомстве оверкаликсских детей.

Физиология или психология

Конечно, далеко не всякий признак, передающийся из поколения в поколение, обеспечивается ДНК или её метилированием. Религиозность, например, тоже передаётся «по наследству», но это не значит, что это непременно должно объясняться изменениями, связанными с генами (хотя есть и такие данные). Однако границу между чисто физиологическими и чисто социальными формами «наследования» провести довольно сложно. В конечном итоге любую социальную или интеллектуальную активность можно свести к гормонам и нервным импульсам. В работе о недостатке материнской заботы у крыс происходили физиологические изменения, отражавшиеся в дальнейшем на их способности оказывать ту же материнскую заботу. Этот замкнутый круг мы склонны считать физиологическим у крыс, но в случае с человеком речь бы шла о «социальной депрессии», то есть о психологическом эффекте.

Похожие результаты были получены для алкоголя и ряда других психоактивных веществ. Важно подчеркнуть, что в этих работах после первичного воздействия токсина на организм матери или отца последующие поколения никогда не сталкивались с исследуемым веществом. Последствия, таким образом, сохранялись в потомстве независимо от прямого эффекта.

Другими словами, наследственность - это не только ДНК. Это абсолютно все качества и признаки, которые мы передаём своим детям, а они - своим, и неважно, в какой форме: генетической, эпигенетической или просто психологической. Поэтому будущим родителям, пожалуй, будет полезно иногда вспомнить Ламарка.

Мнение автора может не совпадать с позицией редакции

Изучение биографий и патографий гениев всех времен и народов приводит к неумолимому выводу: гениями рождаются.

(/Владимир Эфроимсон/)

Издавна люди удивлялись тому, насколько велико бывает сходство между ребенком и одним из его родителей и не только внешнее, но и в том, что касается поведения, мимики, жестикуляции, черт характера. Поистине удивительное, иногда на уровне самых незначительных признаков, сходство с родителями замечается даже у новорожденных. А в некоторых семьях, к сожалению, наблюдается более или менее регулярная повторяемость душевных заболеваний. Попытки понять природу передачи признаков по наследству от родителей детям предпринимались еще в древности. Размышления на эту тему встречаются в сочинениях Гиппократа, Аристотеля и других мыслителей. Сейчас этими вопросами ведает такая наука как генетика, и нам без знания ее основ в дальнейшем не обойтись. Генетика представляет собой одну из основных наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания, она изучает основные свойства организмов, а именно наследственность и изменчивость. На протяжении тысячелетий человек пользовался генетическими методами для улучшения и выведения новых пород домашних животных, занимался селекцией растений с целью повышения их урожайности, не имея представления о механизмах, лежащих в основе этих методов. Археологические исследования позволяют предположить, что уже 6000 лет назад люди знали, что физические признаки могут передаваться от одного поколения другому. Но первый, действительно научный шаг в изучении наследственности, был сделан монахом Грегором Менделем. В своих работах, выполнявшихся в период с 1856 по 1863 г., он открыл основные законы наследственности, заложившие базу современной генетики.

Мендель скрещивал сорта пищевого гороха с красными и белыми цветками. Понятие «ген», по Менделю, можно рассматривать как элемент наследственности, определяющий какую-то конкретную характеристику организма, в данном случае окраску цветка. Он может существовать в двух формах, вызывающих развитие красных цветков и белых цветков. Потомство от первоначального скрещивания имело красные цветки, хотя исходные растения имели гены как для красных, так и для белых цветков. Мендель сделал вывод о том, что ген красного цвета преобладает над белым, и поэтому любое наделенное обоими этими генами растение должно быть красным. Когда эти красные растения скрестили друг с другом, стало возможным объединение двух белых генов и получение потомства с белыми цветками. Мендель показал, что наследственные признаки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Он ввел понятие доминантных и рецессивных признаков, определив доминантными те признаки, которые переходят в гибридные растения неизменными, а рецессивными те, которые становятся при гибридизации скрытыми. Скрытыми, чтобы проявиться в следующем поколении. Часто родители не узнают себя в детях и удивляются, в кого те пошли, а это характерные черты дедушек и бабушек повторились во внуках и внучках.

История, прочитанная мной в одной из газет, наглядно подтверждает закон Менделя о наследовании характерных признаков организма и закономерности их проявления через поколение. За несколько дней до начала Второй Мировой войны десятиклассница Люся и исследователь-полярник Алексей решили пожениться, но отложили это торжество до его возвращения из экспедиции. На прощание сделали две фотографии, одна осталась у Люси, другую взял Алексей, было это в 1941 году. После войны они не смогли разыскать друг друга. Через много лет Люсина внучка Лена приехала в город Красноярск на учебу. В институте она встретилась с парнем по имени Сергей, возникла взаимная симпатия, и он пригласил девушку домой познакомиться с родителями. Когда Лена рассматривала семейный альбом и увидела знакомое бабушкино фото, то выяснилось, что дедушка Сергея – это тот самый полярник Алексей. Молодые поженились, а родственники, не знакомые с основами генетики, уверены, что любовь передалась по наследству. Но по наследству юноше и девушке передались гены дедушки и бабушки, и если один раз между их носителями при встрече вспыхнуло взаимное влечение, то вполне естественно, что это произошло снова, ведь молодые получили в наследство свойственные их предкам психологические особенности и характерные черты внешности.

Гены определяют не только внешний облик, цвет глаз и тип волос. Проведенные за последние пятнадцать лет исследования показали, что гены влияют на такие черты характера как общительность, эмоциональная неуравновешенность, стремление к лидерству, агрессивность, и даже на речь и жесты. Возбуждение нейронов головного мозга определяется, по меньшей мере, 150 различными химическими составляющими, а химический состав нашего организма, как известно, диктуется генами. Природа и воспитание несут равную долю ответственности в таких личных качествах человека, как его стремление к свершению подвига, его совестливость и консерватизм.

Для изучения наследственности Френсисом Гальтоном был предложен так называемый близнецовый метод, заключающийся в сравнении психологических характеристик однояйцевых близнецов, имеющих идентичный набор генов. В США существует информационный банк данных обо всех однояйцевых близнецах, рождающихся в стране. Из этих генетически идентичных пар исследователи выбрали тех близнецов, которые в силу обстоятельств были воспитаны в разных семьях и получили различное образование. Определенные с помощью тестов коэффициенты интеллекта имели у них близкие значения. Коэффициенты совпадали намного больше, чем у двуяйцевых близнецов, выросших вместе и одинаково воспитанных. Это фактически подтверждает роль генетической составляющей в развитии умственных способностей человека. Материалы, собранные в Европе, США и Японии на протяжении тридцати лет, свидетельствуют о том, что когда один из пары однояйцевых близнецов преступник, то и второй – тоже. Совпадение составляет семьдесят процентов. Если один из близнецов и не совершил преступление, то только по независящим от него обстоятельствам, ему просто помешали какие-то объективные причины. Детальное изучение показывает, что однояйцевые близнецы совершают чрезвычайно сходные по характеру преступления. В Висконсинском университете в результате наблюдений над 700 парами близнецов установили, что такие черты характера человека как трусость, робость и склонность к переживаниям в большей степени обусловлены генетической предрасположенностью, чем воспитанием и жизненным опытом. В человеке генетически заложено от сорока до шестидесяти процентов характерных черт, видоизменяющихся в процессе жизни. Например, мальчики, под давлением общества, гораздо чаще девочек утрачивают врожденное чувство страха.

Данные о передаче по наследству психологических наклонностей подтверждаются и другими методами исследования. Генеалогический метод исследует сходство между родственниками в разных поколениях. Метод приемных детей изучает сходство по какому-либо психологическому признаку между ребенком и его биологическими родителями с одной стороны, ребенком и воспитавшими его усыновителями – с другой. Сходство биологических родителей с их отданными на воспитание детьми дает достаточно надежную характеристику наследуемости, сходство же усыновленных детей с приемными родителями оценивает влияние среды. Томас Бухард, профессор психологии университета Миннесоты, проанализировал результаты наблюдений над парами близнецов, которые были разделены в раннем возрасте и воспитывались раздельно. Он обнаружил поразительное сходство их способностей к лидерству, раздражительности и приверженности традициям. Оказалось, что они гораздо больше походили друг на друга, чем на членов семей, в которых воспитывались. Наблюдение за 540 усыновленными детьми, проведенное в Дании, показало, что вес детей соотносится с весом их генетических родителей и не связан с весом приемных, в частности приемной матери, которая их кормила и ела вместе с ними. Недаром в народе говорят, хочешь увидеть, какой станет твоя невеста через двадцать лет, посмотри на ее мать. Интересно, что даже поведение ребенка за столом во многом предопределено генетически.

Педагоги и социологи в силу своей профессиональной заинтересованности склонны значительно преувеличивать влияние воспитания и социальной среды на формирование личности. Это наглядно видно на примере генетических мужчин, родившихся с несформированными половыми органами. Генетик Анна Мойр проанализировала случаи рождения генетических мальчиков с женскими половыми признаками. Они выглядели как девочки, все детство прожили девочками, и только после полового созревания у них вдруг обнаруживались яички и пенис. Изучение жизни семей, в которых появлялись такие «девочки», показало: родители воспитывали их как девочек, прививая все стереотипы женского поведения от одежды до игр. Большинство этих «девочек» несмотря на воспитание и давление социальной среды, требовавшей от них женского поведения, с успехом жили в дальнейшем как мужчины. Этот факт неоспоримо доказывает, что социальные условия воспитания оказывают на жизнь взрослого человека влияние весьма ограниченное, а ключевым фактором является биологическая природа человека.

Некоторые ученые считают, что и секрет счастья связан с генетикой. Они доказывают, что состояние счастья передается по наследству. В семьях, где царят гармония и любовь, обычно вырастают счастливые дети. Словом, если ваш дедушка считал себя счастливым человеком, и в таком же приятном заблуждении пребывали отец и мать, то, скорее всего, вы пойдете по их стопам, вызывая зависть у окружающих. А умение приводить себя в состояние гармонии, называемое счастьем, является частью генокода. Следовательно, чем больше у вас в семье счастливых родственников, тем лучше для вас – шансов оказаться счастливчиком у вас гораздо больше.

Последние эксперименты американских ученых показали, что и в склонности ко лжи виновата генетика. Сотрудники университета Южной Калифорнии определили, что в мозге патологических лгунов содержание белого вещества намного больше. Это вещество, как уже выше говорилось, образует нервные волокна, которые соединяют различные части мозга и отвечают за быстроту и сложность мышления. Вместе с тем серого вещества, которое, как полагают ученые, отвечает за соблюдение морали и контролирует функции ограничения, у врунов значительно меньше. Таким образом, исследователи пришли к выводу, что люди, которые часто лгут и манипулируют, имеют больше «проводников» в голове, которые позволяют им быстро соображать и придумывать. Не знаю, как считать такое быстродействие, хорошей или плохой наследственностью. Оговорюсь, это никоим образом не бросает тень на прекрасную половину человечества с ее потенциально большим содержанием белого вещества в головном мозге. Эксперименты, я полагаю, проводились отдельно для мужчин и женщин, а закономерность подтвердилась для обеих групп.

Далее еще интересней. Специалисты установили, что вовсе не сердце красавицы склонно к измене – к этому ее толкает наследственность, а именно, особые гены. У французов есть пословица: «Можно найти женщину, у которой не было любовников, но невозможно найти женщину, у которой был только один любовник». Это «правило» подтвердили эксперименты британских специалистов под руководством Робина Бейкера. Они исследовали пять тысяч замужних англичанок в возрасте от 30 до 40 лет. Каково же было удивление ученых, когда выяснилось, что одиннадцать процентов детей рождены не от законных отцов. Они появились на свет от мимолетных сексуальных связей, а эти связи происходили в период овуляции, то есть в те четыре-пять дней, когда легче всего забеременеть. По мнению Бейкера, гены неверности у женщин просыпаются именно в этот период. Почему же женщина неожиданно оказывается в постели с мужчиной, с которым только что познакомилась на вечеринке, а на следующий день в полной растерянности не может понять, как это случилось. Генетический тип этого мужчины, состояние его иммунной системы и другие характеристики были подсознательно дешифрованы мозгом женщины. Эти характеристики полностью совпали с требованиями, заданными ее генотипом, и возобладала природа. У женщин и самок животных желание близости достигает наивысшей силы в момент, наиболее благоприятный для зачатия. Гормональный всплеск волной сметает все моральные и общественные ограничения. Профессор из госпиталя Святого Фомы в Лондоне Тим Спектр исследовал 1600 пар близнецов в возрасте от 19 до 83 лет. Все добровольцы анонимно заполнили анкету о своей сексуальной жизни и данные, полученные в результате ее анализа, подтвердили, что женская неверность передается по наследству так же, как время наступления климакса и способность испытывать оргазм.

Мне пришлось наблюдать достаточно длительный срок поведение молодой симпатичной женщины, удочеренной в раннем детстве бездетной и положительной во всех отношениях семьей. Но, несмотря на все усилия по ее воспитанию, несмотря на наличие высшего образования, любящего мужа и малолетнего ребенка, стоило ей отлучиться из дома, не говоря уже о поездке в командировку, в ней просыпались гены бросившей ее в младенчестве матери. Она готова была «встречаться» с любым мужчиной, который хоть на миг обращал на нее внимание. Гены измены достались нам от далеких предков, которым действительно надо было усиленно размножаться, чтобы выжить. Из 1154 человеческих обществ, культур, цивилизаций, исследованных антропологами и этнографами, только пятнадцать процентов придерживались моногамии. Полигамный брак наиболее эффективен для продолжения рода. Именно поэтому неверность сидит в наших генах и передается по наследству. У мужчин эти гены всегда в боевой готовности.

Генотип организма – совокупность признаков, полученных в наследство от своих предков, определяется в момент оплодотворения, но степень последующего проявления этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха может достичь высоты 180 см, но для этого ему необходимы соответствующие условия – освещение, полив, хорошая почва. При отсутствии необходимых условий ген высокого стебля не сможет в полной мере проявить свое действие. Сегодня в сформировавшейся личности мы не можем определить, что дано генотипом, а что привнесено внешней средой. Развитие организма является процессом тесного взаимодействия генов и среды. Некоторые ученые отводят условиям среды, связанным с воспитанием и образованием, незаслуженно большую роль в развитии психологических особенностей и умственных способностей человека. Другие считают, что психологические различия между людьми только в небольшой части зависят от среды, точнее особенностей среды, в которой живут и развиваются носители генотипов. Общее в этих спорах только одно – среда никогда не сможет вывести человека за пределы, определенные генотипом. В человеке многое зависит от доставшихся ему в наследство генов, но не все! В процессе индивидуального развития организма на основе обучения и практического опыта, перенесенных заболеваний, физических и моральных травм формируется уникальная и неповторимая личность. Мозг – это компьютер, запрограммированный наследственностью и нашим индивидуальным сознанием. Генетический код определяет внешность, во многом психологические черты характера человека, но не его судьбу. Человек, познавший особенности своего генетического кода и кода партнера, может многого добиться в достижении поставленной цели.

ОСНОВЫ УЧЕНИЯ ОБ ЭВОЛЮЦИИ.(9класс, ГИА)

ВАРИАНТ №1.

А1. Ч. Дарвин жил и работал в:

1. 19 век, Англия. 3.17 век, Швеция.

2.18век, Франция. 4.18век, Германия.

А2. По наследству от родителей потомству передаются:

1. Только полезные признаки.

2. Полезные и вредные признаки.

3. Только признаки, приобретенные родителями в течении их жизни.

4. все признаки родителей.

А3. Ч. Дарвин считал, что в основе разнообразия видов лежит:

1. наследственная изменчивость и естественный отбор.

2. борьба за существование.

3. способность к неограниченному размножению.

4. единовременный акт творения.

А4. Выберите утверждение, которое точнее отражает взгляды Ч. Дарвина на эволюционные процессы.

1. любая изменчивость может служить материалом для эволюции.

2. материалом для эволюции служит наследственная изменчивость.

3. причиной возникновения приспособлений является прямая адаптация организмов к условиям среды.

4. борьба за существование – это основной результат эволюции.

А5. Значение теории Дарвина заключается в том, что она впервые:

1. объясняла механизм возникновения жизни на Земле.

2. доказала, что виды изменяются в ходе исторического развития.

3. выявила факторы, определяющие причины приспособленности видов.

4. опровергла идеи самозарождения жизни.

А6. Причиной образования новых видов, по Дарвину, является:

1. борьба за существование

2. постепенное расхождение в признаках у особей одного вида.

3. неограниченное размножение

4. непосредственное влияние условий среды.

А7. Причина приспособленности организмов и их биологического разнообразия заключается в:

1. сохранение естественным отбором полезных наследственных изменений.

2. их внутренним стремлением приспособиться к среде.

3. упражнении полезных органов и передаче их по наследству потомкам.

4. единовременном творении всех форм жизни.

А8. Заяц-беляк периодически линяет, изменяя окраску шерсти. Это приспособление:

1. заложено Творцом.

2. сформировалось исторически.

3. не обусловлено генетически.

4. унаследовано от древних млекопитающих.

А9. Устойчивость к ядам у тараканов – это следствие:

1. движущего отбора.

2. стабилизирующего отбора.

4. несовершенства ядов.

А10. В процессе макроэволюции:

1. появляются новые популяции. 3. появляются новые виды.

2. изменяются популяции. 4. появляются новые классы.

А11. Синонимом термина « морфофизиологический прогресс» является термин:

2. ароморфоз 4. адаптация

1. перья птиц 3.крепкий клюв у дятла.

2. красивый хвост у павлина. 4. длинные ноги у цапли.

1. шерсть у млекопитающих.

2. вторую сигнальную систему у человека.

3. длинные ноги у гепарда.

4. челюсти у рыб.

1. конечностей у змей.

2. зубов у птиц.

3. хвоста у взрослых лягушек.

4. пищеварительной системы у цепня.

А15. Корень, возникший у наземных растений, можно рассматривать как:

1. ароморфоз 3. дегенерацию

А16. Отсутствие кишечника у бычьего цепня можно рассматривать как:

1. ароморфоз 3. дегенерацию

А17. Длинный липкий язык, которым хамелеон ловит насекомых можно рассматривать как:

1. ароморфоз 3. дегенерацию

2. идиоадаптацию 4. дивергенцию.

А18. Рецессивные мутации не могут накапливаться в популяциях:

2. ландыша лекарственного 4. бактерии кишечной палочки.

А19. Мутационный процесс:

1. закрепляет изменения генофонда популяции.

3. вызывает появление новых аллелей в популяции.

4. обеспечивает выбор наиболее жизнеспособных генотипов.

А20. Ребенок получил от каждого из родителей две разные мутации, содержащиеся в негомологичных хромосомах. Его будущие дети:

1. получат только одну мутацию.

2. получат обе мутации.

3. не получат ни одной мутации.

4. возможны все три варианта.

В1. Выбери три правильных ответа из шести.

Укажите положения дарвиновской теории эволюции.

А) Организмам присуще внутреннее стремление к прогрессу.

Б) Приобретённые полезные признаки наследуются.

В) Организмы размножаются в геометрической прогрессии.

Г) Мельчайшее различие между организмами может иметь значение для их выживаемости.

Д) В природе выживают и оставляют потомство наиболее приспособленные особи.

Е) Эволюционный процесс подразделяется на микро - и макроэволюцию.

В2. Установите соответствие. Соотнесите формы изоляции с примерами изоляции.

ПРИМЕРЫ ИЗОЛЯЦИИ ФОРМЫ ИЗОЛЯЦИИ

1.мухи пестрокрылки, откладывающие А) географическая

2. растущие в Калифорнии сосны, Б) экологическая

у которых пыльца осыпается в феврале и в апреле. Изоляция

3. Бурые медведи Канады и Финляндии.

4.Дымчатые леопарды, живущие в Индокитае и на острове Тайвань.

5. Полевки обыкновенные, живущие в лесу вдали от воды и по берегам озер.

6. Дриада восьмилепестковая (растение тундры) из Норвегии и Альп.

В3. Укажите правильную последовательность возникновения приспособлений организмов к изменившимся условиям окружающей среды. В ответе запишите соответствующую последовательность букв.

А) внешнее проявление нового признака.

Б) возникновение наследственного изменения.

В) распространение изменения в популяции.

Г) закрепление признака под действием естественного отбора.

Д) расширение ареала.

В4. Вставьте в текст « ПОПУЛЯЦИИ» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр впишите в таблицу.

ПОПУЛЯЦИИ.

В популяциях происходит_____,который обеспечивает выживание наиболее приспособленных к условиям среды особей. Генетической основой этого процесса является________. Конкуренция между особами в популяциях за ресурсы среды приводит к_____,которая особенно обостряется в популяциях с ______.

ПЕРЕЧЕНЬ ТЕРМИНОВ.

Наследственность особей естественный отбор. наследственная изменчивость особей. стабильность численности особей. избыточная численность особей. борьба за существование.

С1. Почему гомологичные органы считаются одним из доказательств эволюции?

С2-С3. Прочитайте текст. Выполните задание.

ВОЗНИКНОВЕНИЕ ПРИСПОСОБЛЕНИЙ У ЖИВОТНЫХ.

Биологи Ж-Б. Ламарк и Ч. Дарвин по-разному объясняли причины возникновения новых видов. Первый полагал, что новые признаки у животных и растений появляются в результате их внутреннего стремления к образованию новых приспособлений. Оно заставляет организмы упражняться в достижении своих целей и, таким образом, приобретать новые свойства. Так, по мнению Ламарка, у жирафа, добывающего пищу на высоких деревьях, появилась длинная шея, у уток и гусей – плавательные перепонки на ногах, а у олений, вынужденных бодаться, появились рога.

Кроме того, ученый считал, что приобретенные организмом в результате упражнений признаки всегда полезны и они обязательно наследуются.

Ч. Дарвин, пытаясь выяснить механизмы эволюции, предположил, что причинами появления отличий между особями одного вида являются наследственная изменчивость, борьба за существование и естественный отбор. В результате изменчивости появляются новые признаки. Некоторые из них наследуются. В природе между особями происходит борьба за пищу, воду, свет, территорию, полового партнера. Если новые признаки оказываются полезными для особи в определенных условиях среды и помогают выжить и оставить потомство, то они сохраняются естественным отбором и закрепляются в поколениях в процессе размножения. Особи с вредными признаками отсеиваются. Свои предположения ученый подтвердил, наблюдая за работой селекционеров. Он обнаружил, что в процессе искусственного отбора человек скрещивает особей с определенными, нужными селекционеру, признаками и получает разнообразные породы и сорта. Ч. Дарвин предположил, что в природе происходит нечто подобное. В результате естественного отбора возникают особи, обладающие новыми приспособлениями к условиям окружающей среды.

С2. Прочитайте текст. Заполните в таблице « Сравнительная характеристика взглядов Ж-Б. Ламарка и Ч. Дарвина на причины возникновения приспособлений у животных» графы, обозначенные цифрами 1,2,3. При выполнении задания перерисовывать таблицу не обязательно. Достаточно записать № графы и содержание пропущенного элемента.

Сравнительная характеристика взглядов Ж-Б. Ламарка и Ч. Дарвина на причины возникновения приспособлений у животных»

Признаки для сравнения

По Ламарку

По Дарвину

Причины появления длинной шеи у жирафа

Наследственность, изменчивость, борьба за существование, естественный отбор.

Характер изменений, лежащих в основе возникновения приспособлений.

Изменения могут быть вредными и полезными. Наследственные изменения либо сохраняются, либо отсеиваются.

Будут ли через несколько поколений рождаться бесхвостые щенки, если их родителям купируют хвосты?

Хвост у щенят постепенно исчезнет.

С3. Объясните, каким образом могло возникнуть приспособление к распространению плодов-крылаток у клена? (Используя текст).

ОТВЕТЫ: 1.1.

С1. Гомологичные органы у представителей родственных групп имеют общее происхождение, но разную степень развития - кожа рептилий и шерсть млекопитающих, рука человека и рука гориллы, губы человека и слона. Их существование доказывает факт эволюции. Аналогичные органы - похожие по функциям, но различные по происхождению также можно считать доказательством эволюции, ибо они свидетельствуют о сходных приспособлениях, выработанных у разных групп организмов в близких условиях среды. Форма тела акулы и дельфина как раз такой пример.

С2. 1) Внутреннее стремление к совершенству через упражнения.

2) Все новые признаки полезны и сохраняются в потомстве.

3) Щенята всех поколений будут рождаться хвостатые.

С3. 1) В результате наследственной изменчивости у плодов могли появиться зачатки лопастей, выростов.

2) Эти выросты позволили плодам перемещаться с помощью ветра на более дальние расстояния, чем остальным, не имеющим выростов.

3) В течение времени естественный отбор сохранял те плоды, у которых новый признак проявляется сильнее.

Биологос! Занимательная биология!

В генетике грядет революция: оказывается, благоприобретенные признаки передаются по наследству.

У знаменитого натуралиста Жана-Батиста Ламарка был весьма специфический взгляд на вопросы наследственности. Ученый был уверен, что потомки получают не только фамильные черты родителей, но и все полезные качества, которыми те обзавелись за свою жизнь. Дети кузнецов, рассуждал Ламарк, выглядят крепче своих сверстников, потому что их отцы всю жизнь орудовали тяжелым молотом. Идеи Ламарка не критиковал только ленивый. Сначала ученому порядочно досталось от современников, а приверженцы появившейся спустя много лет генетики не оставили камня на камне от его учения.

Здесь очень умные крысы, - сказал я.
- Именно это я и говорил ему, Гордон. Здесь вы имеете дело с необычными крысами.
Роальд Даль
«Крысолов»

Возможно, критики поспешили. Почти через 200 лет после смерти натуралиста сотрудник Университета Тафтса Ларри Фейг и его коллеги получили результаты, которые наверняка обрадовали бы знаменитого ученого. В своей новой работе* биологи показали, что умственные упражнения родителей могут сказаться на способностях их потомков.

ЗАРЯДКА ДЛЯ головы.

В отличие от Ламарка Фейг и его коллеги больше интересовались не положительными качествами своих подопытных, а их врожденными недостатками. Для эксперимента ученые использовали генетически неполноценных мышей, у которых отсутствовала способность к обучению. Если обычную лабораторную мышь поместить в клетку, к полу которой подведены электроды, и подвергнуть нескольким ударам тока, она запомнит опыт: угодив в установку повторно, начнет паниковать. А вот генетически неполноценные мыши вели себя в шоковой камере невозмутимо и на второй раз, и на третий, и на четвертый.
Чтобы избавить мышей от врожденного недостатка, ученые принуждали их упражнять ум с самого рождения. Экспериментальные животные проводили все детство в отдельных клетках, куда исследователи подкладывали все новые и новые объекты, заставляя мышей приспосабливаться к меняющейся обстановке. Усилия не прошли даром - такого курса «умственной гимнастики» оказалось достаточно, чтобы генетически неполноценные животные перестали уступать в рассудительности своим обычным собратьям. Благотворный эффект от тренировок не ослабел даже к тому времени, когда у подопытных появилось потомство.

Достижения родителей передаются по наследству детям

У знаменитого натуралиста Жана-Батиста Ламарка был весьма специфический взгляд на вопросы наследственности.

Учёный был уверен, что потомки получают не только фамильные черты родителей, но и все полезные качества, которыми те обзавелись за свою жизнь. Дети кузнецов, рассуждал Ламарк, выглядят крепче своих сверстников, потому что их отцы всю жизнь орудовали тяжёлым молотом. Идеи Ламарка не критиковал только ленивый. Сначала учёному порядочно досталось от современников, а приверженцы появившейся спустя много лет генетики не оставили камня на камне от его учения.

Возможно, критики поспешили. Почти через 200 лет после смерти натуралиста сотрудник Университета Тафтса Ларри Фейг и его коллеги получили результаты, которые наверняка обрадовали бы знаменитого учёного. В своей новой работе* биологи показали, что умственные упражнения родителей могут сказаться на способностях их потомков.

Зарядка для головы

В отличие от Ламарка Фейг и его коллеги больше интересовались не положительными качествами своих подопытных, а их врождёнными недостатками. Для эксперимента учёные использовали генетически неполноценных мышей, у которых отсутствовала способность к обучению. Если обычную лабораторную мышь поместить в клетку, к полу которой подведены электроды, и подвергнуть нескольким ударам тока, она запомнит опыт: угодив в установку повторно, начнёт паниковать. А вот генетически неполноценные мыши вели себя в шоковой камере невозмутимо и на второй раз, и на третий, и на четвёртый.

Чтобы избавить мышей от врождённого недостатка, учёные принуждали их упражнять ум с самого рождения. Экспериментальные животные проводили всё детство в отдельных клетках, куда исследователи подкладывали всё новые и новые объекты, заставляя мышей приспосабливаться к меняющейся обстановке. Усилия не прошли даром - такого курса умственной гимнастики оказалось достаточно, чтобы генетически неполноценные животные перестали уступать в рассудительности своим обычным собратьям. Благотворный эффект от тренировок не ослабел даже к тому времени, когда у подопытных появилось потомство.

Тут-то учёных и ждал главный сюрприз. Хотя потомки мышей, чей ум исследователи пытались развить, продолжали носить в себе дефектные гены родителей, в электрошоковой камере они сразу вели себя как вполне полноценные мыши. Результат, которого первое поколение экспериментальных животных добивалось путём упорных тренировок, давался их потомкам без труда. А вот у мышей, не тренировавших ум смолоду, рождались такие же недалёкие отпрыски.

Вопрос о наследовании приобретённых родителями качеств казался мне давным-давно закрытым, - рассказывает Ларри Фейг. - Мы вообще не собирались исследовать потомство подопытных животных. Это была личная инициатива одного из сотрудников, который очень кстати проявил любопытство. Никто не ожидал подобного результата!.

Убедившись, что достижения мышей передаются потомкам, учёные решили выяснить, какую роль тут играет каждый из родителей. Биологи создавали пары из прошедших тренировку животных и их не напрягавших ум собратьев. Выяснилось, что потомство таких мышей наследовало достижения предков только по материнской линии. При том, что мамы подопытных Фейга выполняли необходимые упражнения ещё в раннем детстве, когда не были беременны.

Результаты эксперимента затрудняются объяснить сами авторы. Генетическая неполноценность мышей не могла стать причиной описанного эффекта, - рассуждает Фейг. - Она лишь сделала результат заметнее. Чтобы понять, как именно передаются приобретённые признаки, нужно отдельное исследование.

У сотрудника Университета Макгилла Моше Шифа, занимающегося генетикой человека, результаты Фейга вызывают восторг. Множество работ показывает, что окружающая среда и образ жизни могут влиять на то, как работают гены человека, не меняя при этом самой информации, записанной в ДНК, - говорит Шиф. - Работа Фейга свидетельствует о том, что такое влияние может каким-то образом распространяться в поколениях. По мнению Шифа, наблюдения его коллеги способны сильно изменить представления о наследственности: Применительно к человеку такие результаты могут означать, что образование, которое женщина получает в ранней молодости, способно принести её потомству самую прямую пользу. Недаром почти все родители хотят, чтобы их дети сначала поучились, а уж потом заводили семью.

Антон Степнов, 15.02.2009 г.

Гены и хромосомы, передаваемые ребенку

Итак, за наследственность отвечают цепочки в молекуле ДНК, именуемые генами. Смешение генов мамы и папы с точки зрения биологии можно считать уникальным генетическим экспериментом. Это название процессу зарождения новой жизни и дал один из ведущих специалистов в области генетики поведения американец Роберт Пломин. В биологии таинство зачатия можно записать в виде некой формулы, как и гены и хромосомы, передаваемые ребенку: каждая яйцеклетка и каждый сперматозоид несут в себе уникальную комбинацию из 23 хромосом. Объединяясь в пары, случайным образом родительские хромосомы образуют неповторимый генетический код будущего человека - генотип.

Младенцы чаще похожи на пап. Природа задумала так, чтобы мужчина сразу увидел в дитяти себя и инстинкт отцовства сформировался быстрее.

Ребенок, как правило, наследует цвет глаз того из родителей, у кого они темнее. Например, у кареглазой мамы и голубоглазого отца, даже если малыш - папина копия, глаза будут, скорее всего, карие.

Если у одного из родителей вьющиеся волосы, то у первенца, скорее всего, тоже будут кудри.

Первый ребенок мальчик? Тогда он наверняка будет похож на маму при помощи ген и хромосом, передаваемых ребенку. Девочка - на папу. В таких случаях говорят: Счастливым будет.

Ум и сообразительность кроха наследует от мамы. Последнее, кстати, подтверждает и наука. Дело в том, что гены, отвечающие за IQ, находятся в Х-хромосомах, которых у женщины две (XX), а у мужчин одна (XY).

Рожденная от гениального отца девочка имеет намного больше шансов прослыть умницей-разумницей, а вот на сыне гениальной личности природа, скорее всего, отдохнет.

Светлоголовым в маму малыш будет только в том случае, если блондины были и среди родственников отца.

Вредные привычки кодируются на генетическом уровне. Алкогольную зависимость определяет ген, ответственный за синтез фермента, расщепляющего спирт. Если ген мутировал, то у ребенка родителей, любящих выпить, возникает склонность к алкоголизму.

То, что характер передается по наследству при помощи ген и хромосом, передаваемых ребенку, пока научно не подтверждено. Хотя открытый несколько лет назад учеными ген агрессивности уже дал почву для подобного рода разговоров. Правда, практические опыты их опровергли. И все же не зря русская молва советовала, выбирая себе жену, смотреть на будущую тещу. Сколько раз вы уже говорили, глядя на дочурку: Ну, упрямая - вся в деда! или замечали в сыне: Эх, характер - отцовский. Да, все это можно списать на так называемые издержки воспитания. На то, что дитя несознательно копирует поведение родителей, замечая, как они ведут себя в определенной ситуации. Затем повторяет поступок в похожих условиях. Между тем ученые, работающие над расшифровкой генетического кода человека, уже установили, что склонность к вежливому или грубому поведению на 34 % заложена в нас генетически. Остальное определяют воспитание и окружение. И даже выбору профессии мы на 40 % обязаны определенному сочетанию хромосом. По крайней мере, лидерские качества в большинстве случаев передаются по наследству. Быть может, именно поэтому на Руси существовал династийный принцип передачи царской власти - от отца к сыну.

Ни в мать, ни в отца.

Действительно, случается так, что сын или дочь совсем не похожи на своих родителей. Они легко могут повторить генотип какого-нибудь дальнего родственника. Или очень дальнего. Причем давно уже покинувшего этот мир.

Непохожесть ни на кого зачастую очень тревожит отца. Скажите любимому мужу, что ваше дитя похоже на вашу прапрабабушку или - и тот на время успокоится.

А еще пересмотрите детские фотографии мужа, свои и увидите: внешность взрослеющего ребенка меняется постоянно и уже через год - два у вашего крохи может проявиться немало ваших черт.

Генетик и доктор философии Дин Хеймер первым заявил о существовании гена гомосексуализма в 1993 г, а в 2004 г написал книгу об открытии гена веры в Бога.

Ученые Великобритании проанализировали характер 609 пар близнецов и оказалось, что если способности к ведению собственного дела, общительность и интравертностъ были свойственны одному из братьев, то они обязательно присутствовали и в характере другого. Даже такая привычка, как желание подолгу сидеть перед телевизором, на 45 % унаследованная. А о гене гениальности и возможности его выделения, и даже его внедрения, в генотип какого-то конкретного человека давно и всерьез спорят ученые. При этом предметом спора является нравственная составляющая вопроса, а вовсе не научные гипотезы. Как сказал некогда Шерлок Холмс, глядя на портреты династии Баскервилей: Вот и не верь после этого в переселение душ!

В 19 веке популярной была телегония. Теория о том, что за внешность крохи отвечают не гены отца, а первый партнер матери. Возникла она после случая, произошедшего в мире лошадок.

Один заводчик решил скрестить зебру с кобылой. Производить потомство от чужака она не захотела. Родившиеся же потом от соплеменника жеребята оказались с зебриными полосками.

Главная Беременность и роды Гены человека: влияние генов на ребенка. Ответы на некоторые вопросы наших читателей

Гены человека: влияние генов на ребенка. Ответы на некоторые вопросы наших читателей

До встречи с малышом осталось несколько месяцев, а вам уже не терпится узнать, на кого он будет похож: на своего голубоглазого светловолосого папу или смуглую кареглазую маму? А вдруг ему «достанется» знаменитый дедушкин нос или все бабушкины родинки. Ответ на эти вопросы вам предстоит получить в день рождения малыша, ведь наша внешность зависит от случайного распределения генов родителей. Правда, эта лотерея все же имеет свои законы.

История любого из нас начинается со встречи яйцеклетки и сперматозоида. Каждая из этих клеток имеет свой багаж из 23 хромосом, от слияния которых появляется неповторимое существо с набором из 46 хромосом. Каждая из них напоминает ожерелье длиной в метр, а шириной всего лишь несколько миллиардных миллиметра - специалисты называют его ДНК, или дезоксирибонуклеиновой кислотой. Это ожерелье состоит из сотен «жемчужин» - генов. В них закодированы наши физические характеристики: голубые или карие глаза, тонкие или пухлые губы, низкий или средний рост. Вот только предугадать, какие именно гены унаследует ребенок, невозможно! Судите сами: яйцеклетка содержит лишь половину генетического «капитала» мамы - 23 хромосомы из 46, которыми она владеет. То же самое происходит и с «багажом» будущего папы. В такой путанице невозможно предугадать, где окажется ген кудрявых волос и ген голубых глаз, попадут ли они в ту часть, что получил ребенок, или останутся в стороне? Тем более что за первым туром лотереи последует второй! После встречи гены скрещиваются - так появлются новые качества. Для каждой из своих физических черт малыш получает по два гена: один от отца, другой от матери. Эти гены могут нести или одинаковую информацию («голубой» для цвета глаз, «прямой» для волос, «горбатый» для носа), или разную («голубой» и «карий», «прямой» и «кудрявый», «горбатый» и «ровный»). В первом случае проблем не возникает: у ребенка с двумя «голубыми» генами будут голубые глаза. А вот если они разные - «голубой» и «карий» - победит тот ген, что сильнее!

Наши гены имеют разные свойства: те, что преобладают и обязательно проявляются, называются доминантными, а те, что «молчат» - рецессивными. Первые, как правило, отвечают за более темные цвета и характерные особенности. Они могут подавить действие генов, отвечающих за светлые цвета и нейтральные черты. Например, можно смело предположить, что в комбинации данных темноволосого папы, обладающего носом с горбинкой, и мамы-блондинки с прямым ровным профилем, доминировать будут признаки отца. И все же это уверенное предположение вовсе не означает, что так оно и будет. Ведь именно благодаря многообразию возможных комбинаций генов ваш ребенок будет неповторимым в прямом смысле этого слова. Давайте посмотрим, как работают законы наследования в разных ситуациях.

Я мечтаю о девочке с голубыми глазами, как у моего мужа. Есть ли у меня надежда, если я сама - обладательница карих глаз?

Ген «голубых глаз» - рецессивный. Другими словами, для того чтобы проявиться, он должен присутствовать в хромосомном наборе малышки в двойном экземпляре: один от папы, другой от мамы. У вашего мужа глаза голубые, значит, оба гена, отвечающие за их цвет, в его «багаже» «голубые». Но есть ли такой ген у вас? Если в вашем наборе проявился доминантный ген «карие глаза», это не значит, что вы не располагаете еще одним, скрытым до поры, - «голубым». Итак, первая гипотеза: у вас оба гена «карие». Тогда все решено: ваш «карий» победит «голубой» мужа.

Вторая гипотеза: вы - носитель скрытого «голубого» гена. В этом случае есть шанс родить девочку с голубыми глазами.

У нас в семье рождаются одни девочки. Означает ли это, что у меня как у будущей мамы нет выбора?

Теоретически шансы родить девочку или мальчика для женщины равны. Но нельзя не отметить, что есть семьи, где на свет появляются только девочки или только мальчики. Чем это объясняется? Единственное, о чем можно говорить с уверенностью, так это о том, что пол ребенка зависит только от будущего отца. Если яйцеклетка встречает сперматозоид с половой хромосомой X - будет девочка. Если сперматозоид несет хромосому Y - родится мальчик. Однако исследования показывают, что пол ребенка зависит еще от того, в какой день относительно времени овуляции (то есть появления на свет готовой к оплодотворению яйцеклетки) вы занимаетесь любовью. А также необходимо изучить календарь определения пола ребенка.

Известно, что сперматозоиды с хромосомой Y подвижнее, своих Х-собратьев, но живут они недолго. Это означает, что зачатие, близкое к моменту овуляции, скорее всего, даст жизнь мальчику. Если же вы занимались любовью за 3-4 дня до или после овуляции, велика вероятность родить девочку.

Мы оба музыканты. Унаследует ли ребенок наши способности?

Спор о врожденном и приобретенном ведется давно. Исследователям удалось установить, что слуховая кора музыкантов (так называют участок мозга, обрабатывающий звуки) развита лучше, чем у остальных людей. Но этот факт ничего не объясняет. Человек становится музыкантом, потому что наследует развитую слуховую кору? Или слуховая кора развивается из-за пристрастия к музыке? И хотя точного ответа на эти вопросы сегодня у специалистов нет, они считают доказанным то обстоятельство, что не все человеческие признаки передаются по наследству и наш мозг поддается влиянию окружающей среды. А значит, жизнь в семье музыкантов может привить ребенку любовь к музыке!

Я - маленькая, а муж - высокий. Значит ли это, что наш ребенок будет среднего роста?

Конечно, полученные нами гены влияют на наш рост. Ясно, что у родителей маленького роста ребенок, скорее всего, будет невысоким, у высоких же - наоборот. А вот сочетание противоположных признаков может дать непредсказуемый результат: либо малыш унаследует данные мамы, либо папы, либо «окажется» где-то посередине. Угадать невозможно! Между тем не стоит забывать, что каждое новое поколение оказывается выше предыдущего - эта особенность связана с изменением в нашем питании.

Можно ли заранее узнать группу крови ребенка?

Сделать это довольно трудно. Можно быть уверенным только в том, что у родителей с IV группой крови (АВ) не может появиться ребенок с I группой (О). А у обладателей I группы (О) обязательно родится малыш с таким же «показателем». Во всех остальных ситуациях ничего определенного сказать нельзя. Например, у мамы с I (О) и отца с IV (АВ) группой может родится малыш со II (ОА) или III (OB). Еще специалисты определили отношения групп крови между собой: I (О) - рецессивная по отношению ко II (ОА) и III (OB).

У нас с мужем пухлые губы. Может ли наш малыш быть тонкогубым?

Да, если вы оба являетесь носителями рецессивного гена «тонкие губы» и оба эти гена встретятся. Объединив свои «усилия», они проявят черту, которая до времени была скрыта.

Один из моих двоюродных братьев страдает болезнью Дауна. Означает ли это, что в нашей семье есть такой ген?

Синдром Дауна - это не наследственная болезнь, его вызывает ошибка при делении клеток. В этом случае яйцеклетка (в 90% случаев) или сперматозоид (10% случаев) оказывается носителем двух хромосом 21 вместо одной - и ребенок получает три таких образца вместо двух. Надо сказать, что риск передачи лишней хромосомы повышается с возрастом. Если среди 20-летних будущих мам это происходит в 1 случае из 2000, то для 40-летних - в 1 из 100. К счастью, современные способы диагностики позволяют определить болезнь Дауна, начиная с первого триместра беременности с помощью биопсии хориона (так называют исследование тканей будущей плаценты) в 10-12 недель беременности, амниоцентеза (анализ околоплодных вод) в 16-20 недель, кордоцентеза (анализ пуповинной крови) в 20-24 недели. Поводом для обследования будущей мамы служит ее возраст (от 35 лет), изменение уровня «сывороточных маркеров» в крови, результаты УЗИ, а точнее, утолщение воротниковой зоны малыша.

У моей сестры ребенок болен муковисцидозом. Мне стоит волноваться или нет?

Если в вашей семье есть случаи развития генетических болезней, то прежде чем планировать беременность, нужно обратиться к генетику.

Муковисцидоз чаще всего возникает неожиданно, то есть ни в семье отца, ни в семье матери таких больных нет. Это обстоятельство объясняется тем, что муковисцидоз - рецессивная болезнь, то есть человек может быть носителем «измененного» гена и не знать об этом. Такого человека называют «здоровым носителем».

К сожалению, если каждый из родителей передаст ребенку «поломанный» ген, он заболеет муковисцидозом. В ситуации, когда оба родителя являются здоровыми носителями, риск родить больного ребенка составляет 25%, впрочем, как и здорового в оставшихся 50% малыш будет здоровым носителем, как и мама с папой. Если отец ребенка - здоровый носитель «измененного» гена, а у матери его и вовсе нет, малыш «пойдет» либо в папу, либо в маму.

В моей семье есть несколько случаев дальтонизма. Передается ли эта особенность по наследству?

Дальтонизм - генетическая «поломка», которую переносит хромосома X. Вопреки сложившемуся мнению, дальтоники не путают зеленый и оранжевый, а воспринимают оба цвета как серый. Мальчиков-дальтоников гораздо больше (8%), чем девочек (0,5%). Этот факт объясняется тем, что у них имеется две хромосомы X, а значит, если малышка получит от одного из родителей хромосому с поломкой, вторая, «здоровая», ее скомпенсирует. У мальчиков - носителей одной хромосомы X и одной Y - нет дубликата для исправления аномалии.

У нас смешанная, афро-европейская пара. Какого цвета будет кожа у наших детей?

Возможен любой вариант: от самого светлого до темного. Дело в том, что цвет кожи закодирован не в одном, а в нескольких генах. Обычно смешение признаков африканской и европейской расы придает коже ребенка оттенок кофе с молоком. Хотя конечный результат зависит еще и от генеалогии родителей. Если папа ребенка - африканец в нескольких поколениях, цвет кожи малыша будет темнее, а вот если он мулат, ребенок «получится» светленьким.

Я всегда была полной. Будет ли мой ребенок иметь проблемы с весом?

Малыш может унаследовать предрасположенность к полноте, но даже в этом случае его вес будет зависеть от многих обстоятельств, и от питания в том числе. К тому же, для того чтобы ответить на ваш вопрос, нужно учитывать наследственность и телосложение будущего папы.

К вопросу о нации генетических рабов

Я уже неоднократно писал. что несмотря на то, что генотип человека был сформирован тысячелетиями эволюции и у разных народ мало чем отличается, тем не менее, недавние культурно-исторические события в жизни отдельных народов сказываются на поведенческих и нравственных признаках населения и передаются по наследству, и как следствие проявляются в уровне жизни последующих поколений.

Последние открытия в области эпигенетического наследования все чаще подтверждают эту гипотезу, хотя многие генетики все еще не хотят с этим соглашаться. Это противоречит всем нынешним представлениям генетики. Мне даже прходилось вступать с генетиками в полемику по поводу влияния религии на уровень жизни.
Ниже статья еще об одном исследовании, подтверждающем факт эпигенетического наследования несколькими поколениями признаков, приобретенных недавними предками.

Говорят, что российская история недостаточно длинна, чтобы сформировать какой-то особый, вырожденческий, злобно-депрессивно-рабский генотип. До сих пор единственным опровергающим аргументом было мутагенное воздействие алкоголя, хотя пьянство в России все же не носит поголовный характер. Однако новейшие исследования показывают, что приобретенные признаки, в частности, связанные с психологическими травмами, таки могут передаваться по наследству через некодирующие регуляторные РНК: http://compulenta.computerra.ru/chelove k/biologiya/10012495/

Психологический стресс, пережитый индивидуумом в детстве, может влиять на поведение и обмен веществ у двух следующих поколений, за что надо винить особые регуляторные РНК, путешествующие вместе со сперматозоидами.

Время от времени мы сообщаем об обнаружении очередного случая эпигенетического кодирования, когда некий признак меняется не оттого, что преобразилась последовательность нуклеотидов в ДНК, а из-за некоего происшествия с белками, обслуживающими ту или иную область ДНК, либо нуклеотидами в ней, кои, оставаясь на своих местах, приобрели химические модификации. После этого активность гена не просто меняется, а меняется надолго, как если бы и впрямь была переписана именно нуклеотидная последовательность.
Эпигенетические механизмы регуляции генетической активности служат посредниками между генами и меняющимися условиями жизни, но результаты этого посредничества, что называется, не вырубишь топором.
Один из весьма ярких примеров сильного эпигенетического влияния на организм - связь памяти и модификаций гистонов: воздействуя на то, что происходит с этими белками - упаковщиками ДНК, мы можем делать память более пластичной, доступной редактированию. Другой пример - влияние условий жизни в раннем детстве на рисунок эпигенетических модификаций, причём модификации эти, как было сказано, остаются с человеком едва ли не на всю жизнь.

Более того, считается, что эпигенетические модификации могут не только оставаться с нами навсегда, но и переходить в следующие поколения. В случае с ожирением, к примеру, многие исследователи полагают, что метаболические нарушения, приводящие к ожирению, закрепляются в эпигенетике, а потом передаются по мужской линии. То есть если отец неправильно питался и нарушил свой метаболизм, существует вероятность, что его дети будут страдать избыточным весом, даже при стопроцентно здоровом питании.

Однако в случае эпигенетического наследования есть одна проблема: не совсем понятно, как такие модификации могут переходить от родителей к потомкам. У растений этот механизм более или менее ясен, а вот у животных половые клетки избавляются от эпигенетических модификаций, и как тогда эпигенетический код передаётся по наследству. (Впрочем, тут стоит заметить, что недавно удалось найти эпигенетические модификации, которые, несмотря ни на что, остаются в половых клетках на всех этапах их созревания.)

Возможно, новое исследование, опубликованное в Nature Neuroscience специалистами Цюрихского университета (Швейцария), поможет прояснить ситуацию с эпигенетическим наследованием у животных. Изабель Мэнсуэй (Isabelle M Mansuy) и её коллеги изучали молекулярные механизмы наследования поведения у мышей. Для этого у животных вызывали детскую травму: пока они были маленькими, их каждый день в течение двух недель на какое-то время отнимали от матерей. Этот непредсказуемый стресс бил как по детёнышам, так и по самкам, которых к тому же сажали на время в тесную трубу.

Когда стрессированные детёныши выросли, исследователи заметили, что они более равнодушны к опасности: например, они меньше других боялись открытых и хорошо освещённых пространств (обычная мышь, понятно, будет избегать таких мест). Подобное равнодушие к риску считается признаком депрессии можно сказать, из стрессированных детёнышей вырастали депрессивные взрослые. Кроме того, различия были в обмене глюкозы, то есть стресс в раннем возрасте продолжал сказываться не только на поведении, но и на метаболизме взрослых животных.

Но что самое главное - эти изменения в поведении и метаболизме передавались по наследству. Когда стрессированных в детстве мышей скрещивали с обычными, их потомство тоже демонстрировало равнодушие к опасности, признаки депрессии, их организм также не совсем нормально обращался с глюкозой. Причём всё это передавалось не только детям, но и внукам, то есть ещё и во второе поколение.

Попытавшись определить молекулярные механизмы наследования, учёные обнаружили, что сперматозоиды, сыворотка крови и гиппокамп у мышей с детской травмой и у обычных грызунов разнятся по уровню некоторых микроРНК и piwiРНК (особой разновидности некодирующих регуляторных РНК). Стрессовые изменения в регуляторных РНК были и у детей стрессированных мышей (особенно в гиппокампе и сыворотке), и у их внуков.

Чтобы убедиться, что дело всё-таки в регуляторных РНК, исследователи взяли эти РНК из сперматозоидов мышей с детской травмой и ввели их чужую оплодотворённую яйцеклетку (иначе говоря, сами половые клетки в данном случае никакого стресса не испытывали). После этого яйцеклетку имплантировали самке и дожидались, когда детёныши, зачатые таким хитрым образом, появятся на свет. Как можно догадаться, повзрослев, мыши демонстрировали те же особенности поведения и метаболизма, что и непосредственные потомки стрессированных родителей.

То есть детская психологическая травма может аукаться на протяжении ещё двух поколений, и молекулами-переносчиками тут работают регуляторные некодирующие РНК, которые, наряду с модификациями гистонов и метилированием ДНК, считаются одними из основных проводников эпигенетических сил. Заметим, что в данном случае речь опять идёт о наследовании эпигенетического кода по мужской линии: РНК детского стресса приходят в зародыш вместе со сперматозоидом.

Теперь перед учёными стоит такая задача: надо понять, как именно регуляторные РНК, доставшиеся по наследству, влияют на развитие метаболических путей нового организма и его мозга. Выяснив детали этого механизма, мы узнаем, участвует ли он в формировании других типов поведения и работает ли он у человека.

 

 

Это интересно: